2

SNOBOL Session

Chairman: JAN Lee
Speaker: Ralph E. Griswold

PAPER: A HISTORY OF THE SNOBOL
PROGRAMMING LANGUAGES

Ralph E. Griswold

Department of Computer Science
The University of Arizona

Development of the SNOBOL language began in 1962. It was followed by SNOBOL?2,
SNOBOLS3, and SNOBOLA4. Except for SNOBOL2 and SNOBOL3 (which were closely
related), the others differ substantially and hence are more properly considered separate
languages than versions of one language. In this paper historical emphasis is placed on the
original language, SNOBOL, although important aspects of the subsequent languages are
covered.

1. Background

1.1. Setting

The initiative for the development of a new string manipulation language that was to
become SNOBOL arose in the Programming Research Studies Department at Bell Tele-
phone Laboratories, Incorporated (BTL). This organization was originally situated at
Whippany, New Jersey, but moved to the new Holmdel, New Jersey, Laboratory in mid-
1962. The department was part of the Switching Engineering Laboratory, which was
mainly responsible at that time for advanced planning and engineering for the Electronic
Switching System (ESS) telephone offices. The department itself, although not part of the
Research Division of BTL, was concerned with computer-related research and its mem-
bers were relatively isolated from ESS concerns. Departmental work was in areas of auto-
mata theory (Lee, 1960, 1961b), graph analysis (Lee, 1961a; Griswold and Polonsky, 1962;

HISTORY OF PROGRAMMING LANGUAGES 601
Copyright © 1981 by the Association for Computing Machinery, Inc.

Permission for reproduction in any form must be obtained from Academic Press, Inc.

ISBN 0-12-745040-8

Ralph E. Griswold

Griswold, 1962), associative processors (Lee and Paull, 1963), and high-level program-
ming languages for formula manipulation (Lee et al., 1962).

To understand what follows, the environment within the department needs to be under-
stood. The department was small by BTL standards (six persons) and had no internal su-
pervisory structure. The department head, C. Y. (Chester) Lee was mainly concerned
with his own research and other members of the department worked relatively indepen-
dently, either individually or in small groups that formed naturally. In 1962 Ivan P. Po-
lonsky and I were working with the SCL programming language that had been developed
at BTL by Chester (Lee et al., 1962) and were dividing our efforts between problem solv-
ing and the application of SCL to such problems as symbolic integration, factoring of
multivariate polynomials, and the analysis of Markov chains. David J. Farber was also
in the department, but he was more concerned with operating systems and software
itself. At that time, he was also secretary of SHARE and was involved in many activities
inside and outside BTL that were not directly related to the other research going on in
that department.

Although SCL had a number of interesting features, it had notable deficiencies: poor
performance, a severely limited data region, and an intricate, low-level syntax that re-
quired lengthy programs for realizing simple operations. As Ivan and I became increas-
ingly frustrated with the limitations of SCL, Dave obtained COMIT (Yngve, 1958;
MIT Press, 1962) for our use. Although COMIT was interesting, its difficult syntax and
orientation toward natural-language processing made it unsuitable for formula manipu-
lation and graph analysis. In the fall of 1962, the decision to attempt the design of a new
programming language came spontaneously from Dave, Ivan, and myself. We simply felt
that we could produce a language that was superior, for our purposes, to any one that ex-
isted at that time. Because of the relative independence of the members of the department
and the absence of any formal channels of communication or approval, the early work
that led to SNOBOL went on without the specific knowledge of Chester and, in fact, in
an air of considerable secrecy. At the same time, Chester was working on an improved
version of SCL, although we were not then aware of his work either.

These two independent movements to develop a new programming language surfaced
with Chester’s presentation of his new version of SCL in November 1962. While his pro-
posal added a number of new facilities to SCL, it retained and expanded the features that
had led to our divergent work. When we subsequently revealed our design (which was
considerably more developed than Chester’s) the conflict was evident: the department
could not support the development of two languages. Without our help, Chester did not
have the resources to implement his proposal. Since Chester was head of the department,
we could not continue our work if Chester directed us not to. While Chester did not stop
our work, there was considerable tension within the department in the ensuing months.

1.2. Initial Design

The group that was developing SNOBOL worked out its own internal relationships on
the basis of the personalities and the qualifications of the persons involved. Dave was the
acknowledged leader. He was the only member of the group with substantial software de-
velopment experience and with contacts in the professional computing community. T had
virtually no computing experience prior to coming to BTL and Ivan’s background was
largely in application areas rather than in software development.

602 ' Part XIlI

Paper: A History of the SNOBOL Programming Languages

The group operated autonomously and without outside direction. Dave provided an in-
terface with other computing organizations within BTL, most notably the computer center
and the research department at the Murray Hill Laboratory. His discussions with persons
there—M. Douglas Mcllroy, Robert Morris, and Victor A. Vyssotsky—undoubtedly had
an indirect influence on the design and implementation of SNOBOL.

It should be noted that Dave viewed himself primarily as a language designer and imple-
mentor, while Ivan and I initially viewed ourselves primarily as eventual users. This view
changed over a period of time as SNOBOL became more important to us than the prob-
lems it was intitially designed to solve. All members of the group regarded the effort as
tentative, with its ultimate direction depending on the success of the initial efforts.

1.3. The Implementation

Consideration of how the implementation might be handled was present in the early lan-
guage design stage. When the initial design was satisfactory to the group, actual imple-
mentation became the next goal. A trial implementation was undertaken on an IBM 7090
early in 1963. At that time the group felt that a running system was essential in order to
determine whether or not the new language was worthwhile. We did not think that a large
initial investment was justified, reasoning that if the language proved valuable, more de-
sign and another implementation would be required.

Dave felt that a true compiler for a language like SNOBOL was impossible and that an
interpretive system would give us the flexibility to implement the kinds of language fea-
tures we wanted. Source-language statements were translated into intermediate forms of
flags and pointers suitable for efficient interpretation. This style of interpretation provided
the model for future implementations. With its flexibility, it also provided a vehicle suit-
able for developing esoteric language features.

Dave sketched out the organization of an interpretive system and wrote the compiler
and interpreter. The attitude toward the implementation is exemplified by the compiler,
which Dave literally coded in macro FAP on the back of a business envelope one evening.
(It has been said that the compiler ran as if it had been coded on the back of an envelope.)
Doug Mcllroy’s string manipulation macros (Mcllroy, 1962) were used extensively in the
initial implementation and were to figure prominently in subsequent work. Ivan and I im-
plemented the pattern-matching portion of the interpreter. This proved to be a challenge,
since I had no prior assembly-language programming experience and Ivan’s experience
was limited. Laura White Noll assisted the group by implementing the symbol table and
storage management routines, again relying on work done by Vic Vyssotsky and Doug
Mcllroy on scatter storage techniques (Mcllroy, 1962, 1963; Morris, 1968).

The short period of time required to achieve the first usable implementation of SNO-
BOL —about three weeks—was a matter of pride within the group and was held as proof
that the implementation of a programming language need not be time consuming and
costly.

While the original implementation was not of the ‘‘toy’’ variety, it nonetheless required
considerable incremental improvement and debugging, especially in the area of storage
management. By the summer of 1963, however, the implementation was in extensive use
within BTL, mainly in the Research Department at Murray Hill and the Electronic Switch-
ing Systems groups at Holmdel.

SNOBOL Session 603

Ralph E. Griswold

1.4. Reaction to SNOBOL

Dave, Ivan, and I were the first users of SNOBOL, although use spread rapidly through
BTL. The earliest recorded applications were in the evaluation of algebraic expressions
(Griswold, 1963c), a program to convert network descriptions into FORTRAN programs
that performed statistical analyses of these networks (Faulhaber, 1963), a program to con-
vert descriptions of ESS data into IPL-V programs that generated the corresponding as-
sembly-language code to provide data regions for ESS programs (Griswold and Polonsky,
1963b), and a FORTRAN compiler (Farber, 1963a).

The initial reaction of users to SNOBOL was surprisingly enthusiastic. Programmers at
BTL quickly learned the new language and began using it for a variety of problems. By
late 1963 and early 1964, SNOBOL had been used within BTL for text generation (Man-
acher, 1963), graph analysis (Magnani, 1964), syntax analysis (Griswold, 1964a), and simu-
lation of automata (Faulhaber, 1964). It was also being considered for application to sev-
eral engineering problems of interest to the Bell System. There was no question that
SNOBOL was a success. Chester acknowledged its value (Lee, 1963) and permitted work
on SNOBOL to continue.

The first official announcement of SNOBOL outside BTL came in a talk by Dave at the
University of Michigan in October 1963 (Farber, 1963b). Other talks followed and infor-
mation spread by word of mouth. With distribution of the SNOBOL system, interest in-
creased rapidly. Obviously a long pent-up need for such a programming language had been
satisfied. Programmers began using SNOBOL for problems which they were formerly un-
willing to undertake. Examples were programs to generate other programs (Faulhaber,
1963; Griswold and Polonsky, 1963b) and ‘‘quick-and-dirty’’ experimental compilers
(Farber, 1963a).

1.5. The Problem of a Name

While SNOBOL is the only name for the language that most persons have ever heard,
several other names were used tentatively and the final choice came with some difficulty.
The language was initially called SCL7, reflecting its origins. At that time SCL was offi-
cially at version 5 (SCLS5) and the name SCL7 refiected a feeling of advancement beyond
the next potential version. Actually the new language was very much different from SCL.
With Chester’s separate language design and an increasing disaffection with SCL on our
part, we sought a new name.

The first choice was the acronym SEXI (String EXpression Interpreter). The first imple-
mentation of SNOBOL in fact printed this name on output listings (Griswold, 1963c). The
name SEXI produced some problems, however. Dave recalls submitting a program deck
with the job card comment SEXI FARBER as per BTL standards, to which the I/O clerk
is said to have responded, ‘‘that’s what you think.”’ In the original draft report, the typed
name SCL7 was changed by hand to SEXI except in the opening sentence (Griswold,
1963b). In Chester’s critique of this draft (Lee, 1963), he commented:

I feel the use of a name such as SEXI may be justified if the language is so poor that it needs
something to spice it up. Here we have an extremely good language. The use of SEXI may be
interpreted as a lack of confidence on our part.

The draft report itself acknowledged the problem of a name in its last paragraph (Gris-
wold, 1963a):

604 Part Xill

Paper: A History of the SNOBOL Programming Languages

A suitable name for such a string manipulation language is also badly needed . . . in addition
to the two names referred to in this report [SCL7 and SEXI] . . . PENELOPE has been sug-
gested, after the wife of Ulysses.

In fact the name PENELOPE was considered because of its graceful sound—the refer-
ence to Ulysses was an afterthought.

Despite a continued attachment to the name SEXI, we recognized that such a name was
unlikely to gain approval from the authorities who controlled the release of information
from BTL. Consequently the search for a new name began. This search was long and frus-
trating. We have since jokingly commented that it took longer to find a name than it did to
design and implement the language (and that it was harder). The result was less satisfac-
tory, as well, in most views.

We concentrated mainly on acronyms, working with words that described significant
aspects of the language, such as ‘‘expression,’” ‘‘language,’”” ‘‘manipulation,’”” and ‘‘sym-
bol.”” Hundreds of suggestions were made and rejected. I take personal credit and blame
for the name SNOBOL. However, the name was quickly accepted by Dave and Ivan, As I
recall, I came up with the name first and then put together the phrase from which it was
supposedly derived—StriNg Oriented symBOlic Language. This ‘‘pseudo-acronym’’ was
intended to be a joke of sorts and a lampoon on the then current practice of selecting
“‘cute’’ names for programming languages. Our humor was not appreciated and explana-
tions of the origin of the name met with puzzled or pained expressions. With Steve
Unger’s comment, ‘‘that’s disgusting,”’ we suppressed the basis for the name SNOBOL
until some years later when a publisher insisted on an explanation (Griswold, 1972a, p. ix).

The relatively lame humor exhibited in the choice of SNOBOL was not limited to the
name of the language itself. Dave’s error messages such as ‘‘ALL OUT OF SPACE,
YELL FOR HELP” and “NO END STATEMENT, WHISPER FOR HELP’’ and the
cryptic *‘RECOMPILE NOT ENABLED”’ quickly became wearisome to users.

Had we realized the extent to which SNOBOL would become popular, we probably
would have selected a more dignified name. I recall that it was years before I could give a
talk on SNOBOL without a sense of embarrassment about the name. SNOBOL has, of
course, attracted many puns and bad jokes (e.g., the chance of a SNOBOL in hell). For
some curious reason the lame humor of the name has been carried on by others. An exam-
ple is Jim Gimpel’s ICEBOL program for compressing SNOBOL programs (Griswold ef
al., 1968b, pp. 197-202). Probably the worst pun is SPITBOL, SPeedy ImplemenTation of
SNOBOL (Dewar, 1971). Other examples are FASBOL (Santos, 1971), SNOFLAKE
(Haight, 1970), ELFBOL (Gimpel and Hanson, 1973), SNOBAT (Silverston, 1976a), and
most recently SLOBOL (Dalgleish, 1977).

A curious aspect of the choice of a name arose in the conflict with Chester between his
language and ours and how the personnel would be affiliated. Implicitly acknowledging the
success of the language, ultimately to be named SNOBOL, Chester offered to join our
effort if we retained the name SCL but not if we picked another name. We decided to pick
another name.

1.6. SNOBOL2 and SNOBOL3

A successor to SNOBOL was almost inevitable. Since there was no question of the de-
mand for SNOBOL, issues in the original design and implementation had to be faced. The
most notable design problem was the lack of any built-in function mechanism. As a result,

SNOBOL Session 605

Ralph E. Griswold

even the simplest computations often required contorted, laborious, and inefficient pro-
gramming techniques. In addition, the original implementation, while workable, was not
sufficiently complete and not robust enough for wide use.

SNOBOL2 included a few minor changes to SNOBOL and a number of built-in func-
tions for string and numeric computation. In addition, a facility for adding separately com-
piled assembly-language functions was included (Farber et al., 1965b). The implementa-
tion was mostly redone from the ground up but again for the IBM 7090. This time more
extensive use was made of the string manipulation macros (Mcllroy, 1962) and their reper-
toire was extended (Farber et al., 1965a).

SNOBOL2 was placed in use at BTL in April of 1964 (Farber er al., 1964c). Although
SNOBOL2 was used briefly at Project MAC under CTSS (Corbatd er al., 1963), it was
never generally distributed outside BTL.

From the inception of SNOBOL?2, it was clear to us that it had a serious deficiency: the
lack of a mechanism for programmer-defined functions. This mechanism was designed,
but not implemented because of the lack of personnel resources. With the summer assign-
ment of Lee C. Varian (then a student at Princeton University) we had the necessary sup-
port, and the implementation of SNOBOL3 was undertaken. Glenn K. Manacher, on loan
from the research division at Murray Hill, assisted in the design and implementation.
SNOBOL3 was running in July of 1964 (Griswold, 1964b), and it officially replaced SNO-
BOL2 at BTL in October (Griswold, 1964c).

1.7. A Refractory Period

SNOBOL3 was greeted enthusiastically in the user community and its distribution to
IBM 7090/94 installations was widespread. As a result, we became more and more in-
volved in distribution, maintenance, and documentation.

As a result of increased interaction with the computing community after the release of
SNOBOLS3, we received many suggestions for changes and additions to the language. One
of the evident deficiencies of SNOBOL3 was its lack of facilities for manipulating struc-
tures. Ivan and I began a series of investigations and experiments in this area using the
external function mechanism of SNOBOL3 to add structure manipulation functions
written in assembly language (Griswold and Polonsky, 1965; Griswold, 1965). While the
results were interesting, they were ingonclusive and did not provide clear direction for any
substantial changes to SNOBOLS3. Some related work continued, but language design and
development were largely inactive. Unlike the progression from SNOBOL to SNOBOL.2
and SNOBOLS3, the progression to SNOBOL4 was not inevitable. ‘

1.8. The Setting for SNOBOL4

This refractory period coincided with major changes in computing at BTL. In 1965
badly overloaded computing facilities and dissatisfaction with batch-mode operation, cou-
pled with the imminence of the third-generation large-scale scientific computers, led to a
corporate decision to revamp the computing facility and its mode of operation. The MUL-
TICS project (Corbaté and Vyssotsky, 1965) came into being, with large-scale interactive
computing on GE 645s proposed as a replacement for the IBM 7094 batch operations then
in use.

This major transition to new hardware of course implied major software development,

606 Part XIli

Paper: A History of the SNOBOL Programming Languages

including development of a replacement for SNOBOL3. The reimplementation of SNO-
BOL3 was not an interesting or challenging project, but new ideas on language design
coincided with this concern and led to the proposal for the development of SNOBOL4 on
the new computer. We proposed to implement a SNOBOL-type language for the new
computer, provided we could develop a new language as well. Our proposal was accepted,
although no description of the new language was offered or requested.

In September 1965 a working group for production of GE 645 software was established
within the local organization and James F. Poage was given the *‘technical responsibility
for the implementation of SNOBOL 1V [sic]” (Poage, 1965).

There was some reconsideration of an alternative for the name SNOBOL4. There were
two main issues. On one hand, we expected SNOBOLA4 to be substantially different from
SNOBOL, SNOBOLZ2, and SNOBOL3. Hence there was an advantage to the selection of
a completely new name to avoid the implication that SNOBOL4 was simply another ver-
sion of SNOBOL3 with some minor changes. On the other hand, we felt the identification
associated with the name SNOBOL would be valuable. We eventually made the decision
to retain that identification.

1.9. Early SNOBOL4 Work

An early decision had to be made on the method to be used to implement SNOBOLA4,
since there was no GE 645 available for use. Most MULTICS-related GE 645 software
development was done at Project MAC, originally using a 645 simulator running on a GE
635. EPL (Cambridge Information Systems Laboratory, 1968), an early version of PL/I,
was used for most systems programming. Since our work on SNOBOL4 had low priority
within the MULTICS project, and at Holmdel we were remote from the sites of major
development work, we decided to do our original implementation of SNOBOL4 on our
local IBM 7094, which had good, running software and to which we had access. We antici-
pated, of course, the need to transport our implementation to the new computer.

In retrospect, it is interesting to note that although SNOBOL4 was officially part of the
MULTICS project, the affiliation was largely ignored by both sides. No schedules were
established, no goals were projected, and no reports of documentation were ever re-
quested or supplied.

Work on SNOBOLA4 began in earnest in February 1966. The principals in the design and
implementation of SNOBOL4 were Jim Poage, Ivan, and myself. Robert A. Yates served
in a supporting role in the implementation of storage management routines and Al R.
Breithaupt, on a temporary internship assignment, provided general programming sup-
port. By this time Dave Farber had other interests and responsibilities. He served pri-
marily as an advisor on implementation and helped in providing support software. Al-
though Jim Poage was the supervisor of the group developing SNOBOLA4, I assumed de
facto leadership of the technical aspects of the project.

Several important concerns affected the design of SNOBOL4. One was the need for a
portable implementation that could be transferred to the GE 645 easily when the new com-
puter became available. Another, more fundamental concern was our desire for more gen-
erality in the implementation. We expected SNOBOLA4 to serve as a vehicle for language
experimentation and to be sufficiently flexible that design and implementation could be
concomitant— with new features tested experimentally in the context of a working sys-
tem. From an implementation viewpoint, this led to the evolution of the machine-inde-

SNOBOL Session 607

Ralph E. Griswold

pendent macro language SIL (Griswold, 1970, 1972a) that had origins in the use of
Mcllroy’s string macros in the early implementation of SNOBOL.

Efficiency had been a minor concern in SNOBOL, SNOBOL?2, and SNOBOL3, both to
the designers and to the users, until a number of large applications raised questions about
costs and memory limitations. During the initial design period of SNOBOL4, the pros-
pects offered by third-generation hardware were the subject of much discussion. With the
promise of cheaper, faster processors and virtual memory, software planners were envi-
sioning an environment in which efficiency considerations could be ignored and memory
could be treated as virtually unlimited. While we were skeptical, we nonetheless decided
to design SNOBOL4 as if speed and space were not serious concerns. We recognized from
the beginning that the resulting system would be inefficient and we anticipated the need for
more efficient implementations if SNOBOL4 became popular.

The philosophy of generality, flexibility, and concomitant design and implementation
had a greater effect on SNOBOL4 than on earlier languages. While SNOBOL, SNO-
BOL2, and SNOBOLS3 were largely designed prior to implementation and completed as
identifiable projects, SNOBOL4 development extended over a period of years and passed
through many stages as new features were added and old ones discarded.

The implementation of SNOBOL4 was a metamorphic process. The first versions were
obtained by gradual conversion of SNOBOL3, using external functions for features (such
as pattern matching) that were substantially different from those of SNOBOL3. By April
1966 (Griswold, 1966b) a running version was used experimentally. The emphasis on flexi-
bility and generality is evidenced by the fact that this version permitted source-language
redefinition of internal executive procedures. Even the meaning of literals could be
changed during program execution.

By August 1966 (Griswold, 1966d), a relatively complete preliminary version of SNO-
BOL4 was working on the IBM 7094 and language design and implementation were pro-
ceeding concomitantly as planned. In the meantime, the BTL decision to convert to GE
645s under MULTICS had been reconsidered and some of the laboratories had decided to
change to other computers. Most notable was the Indian Hill Laboratory’s change to an
IBM 360/67 under TSS. In June 1966 (Martellotto, 1966) the Indian Hill Laboratory ex-
pressed interest in a ‘*‘SNOBOL compiler’’ for the 360/67. The decision of our own Holm-
del Laboratory in 1966 to go to a 360 under OS shifted our own implementation concerns.

Our first use of a 360 was at Princeton University, where Lee Varian arranged for us to
obtain access to their computer facilities and supported our first attempt at transporting
SNOBOL4 to a new computer. This work began in October 1966 and a 360 version of
SNOBOL4 was running by the end of the year. In the spring of 1967, a 360/40 was in-
stalled at Holmdel. Although the first SNOBOL4 system sent outside BTL in June 1967
was for the IBM 7094 (Griswold, 1967), development work had been shifted entirely to the
IBM 360 by this time.

1.10. Continuing SNOBOL4 Development

With the first release of SNOBOL4 outside BTL, work continued on new features. Be-
ginning in mid 1967 considerable support was given as well to transported implementa-
tions in progress by other persons for the CDC 6000, GE 635, UNIVAC 1108, RCA Spec-
tra 70, and CDC 3600.

Employees from other BTL organizations who were on temporary assignment to gain

608 Part XHI

Paper: A History of the SNOBOL Programming Languages

additional work experience augmented the personnel regularly assigned to the project.
Paul D. Jensen and Bernard N. Dickman, who joined the project for the summer of 1967,
designed and implemented tracing facilities (Dickman and Jensen, 1968). In the spring of
1968, Howard J. Strauss, also on temporary assignment, designed and implemented exter-
nal functions (Strauss, 1968). James F. Gimpel was a contributor to continuing SNOBOL4
development, assisting in documentation, theoretical investigations of pattern matching
(Gimpel, 1973a), and developing language extensions of his own (Gimpel, 1972). Michael
D. Shapiro participated in the project intermittently from 1967, contributing ideas, testing
the system, assisting with the documentation, and working on the CDC 6000 implementa-
tion (Shapiro, 1969).

The distribution of SNOBOL4 was substantially more widespread than that for SNO-
BOLS3. By the end of 1967 (Griswold, 1968), some 58 IBM 360 systems had been distrib-
uted and documentation was being widely disseminated (Griswold et al., 1967b). The deci-
sion to undertake extensive distribution was made by the implementors and I did most of
the distribution myself, including copying magnetic tapes.

Despite the increased burden of distribution, correspondence, and maintenance, design
and implementation continued. The first officially complete version was distributed in
March 1968. Version 2, with substantial language changes, was distributed in December
1968 (Griswold et al., 1968a), and Version 3, the last version released from BTL, was com-
pleted in November 1969 (Griswold et al., 1971).

Subsequent work at BTL consisted of corrections and a substantial amount of docu-
mentation that was related to implementation and installation. In August 1971 I left BTL
to join the faculty of the University of Arizona. At that time, active development of SNO-
BOLA4 per se ceased, although Jim Gimpel at BTL continued his work on pattern matching
(Gimpel, 1975), implementation techniques (Gimpel, 1974a,b), and the development of an
efficient SNOBOL interpreter for the DEC-10 (Gimpel, 1973b). At the University of Ari-
zona, work turned toward more research-oriented topics (Griswold, 1975¢; Hallyburton,
1974; Druseikis and Griswold, 1973). Although some SNOBOL4 activity continues at vari-
ous locations, it is now mostly concerned with implementations for new machines and
with techniques for achieving greater efficiency.

1.11. Documentation

Until the first implementation of SNOBOL was working, little thought was given to doc-
umentation. The first attempt at documentation came in the form of a draft in March 1963
(Griswold, 1963a). The first complete document was an internal memorandum in May of
that year (Farber et al., 1963a), which was released in October for distribution outside
BTL. A journal article based on this paper was submitted to the Journal of the ACM in
October of 1963 and was published in January of 1964 (Farber ez al., 1964a). Rapid publi-
cation hastened the public awareness of SNOBOL. The manuscript had been distributed
for review prior to submission and it was accepted the day after it was formally submitted
(Farber et al., 1963b; Hamming, 1963). The article appeared in print in less than three
months.

The only documentation of SNOBOL2 was an internal draft memorandum (Farber et
al., 1964b). The lack of more formal documentation reflects the limited time that SNO-
BOL.2 was in use.

Documentation for SNOBOLS3 followed the pattern for SNOBOL—internal memo-

SNOBOL Session 609

Ralph E. Griswold

randa that were subsequently approved for release outside BTL as technical reports. A
basic report describing the language (Farber et al., 1964d) was followed by reports on the
external function mechanism (Farber et al., 1965b) and extensions to SNOBOLS3 effected
by use of the external function mechanism (Manacher, 1964; Manacher and Varian, 1964;
Griswold and Varian, 1964; Griswold, 1965; Griswold and Polonsky, 1965). Official publi-
cation of a description of SNOBOL3 came in the form of a long article in the Bell Systems
Technical Journal (Farber et al., 1966). This journal was selected for the publication pri-
marily because of its willingness to publish a paper of sufficient length to include a com-
plete description of SNOBOL3. Prentice-Hall expressed interest in publishing a book on
SNOBOLS3, but after an investigation of the potential market, I discouraged this project.
However, a SNOBOLS3 primer was published by the MIT Press (Forte, 1967).

With SNOBOL4, documentation was taken much more seriously. Informal working
papers on design and implementation were encouraged, but distribution was limited to
those involved in the project. Several series of documents relating to the SNOBOL4
project were initiated for distribution outside BTL. These included installation notes and a
series of technical reports (S4Ds) documenting the language and its implementation. The
first S4Ds were concerned primarily with language descriptions (Griswold et al., 1967b,c,
1968a). To date the S4D series has run to 56 documents, many of which have been revised
repeatedly to reflect changes in SNOBOLA4 (Griswold, 1978b).

By the time SNOBOI 4 was available for general distribution, the language manual was
finished (Griswold ef al., 1968a) and was being distributed by BTL. While distribution of
earlier documentation had not been a significant problem, the demand for this manual was
high. Before the publication of a book on SNOBOL4, over 2000 copies of the manual were
distributed free of charge by BTL, and approval had been given for reprinting of over 1000
copies by organizations outside BTL.

In 1968 an adaptation of this manual was printed by Prentice-Hall (Griswold et al.,
1968b) and a revised, second edition (the ‘‘Green Book’’) was published in 1971 (Griswold
et al., 1971). This latter book remains the standard reference to the language. A primer
more suitable for inexperienced programmers was published in 1973 (Griswold and Gris-
wold, 1973), to be followed by other introductory books (Newsted, 1975; Maurer, 1976).
Recently, more advanced books on the use of SNOBOL4 have appeared (Griswold,
1975a; Gimpel, 1976; Tharp, 1977). A book describing the implementation and especially
its interaction with design appeared in 1972 (Griswold, 1972a).

Although there has never been an organized SNOBOL user’s group, topical information
has been published in the SNOBOL Bulletin of SIGPLAN Notices (Waite 1967-73) and
the SNOBOILA4 Information Bulletin which is issued aperiodically (Griswold, 1968-).

1.12. Support, Costs, and Schedules

Someone always wants to know how many man-years it took to develop a language and
what the total cost was. Except in particularly highly structured and closely directed
projects, such figures are difficult to determine at best and may be grossly misleading at
worst. In addition, simple manpower estimates do not take into account the varying range
of abilities of the persons involved.

For the SNOBOL languages, assignments of persons to the project were often informal
or unofficial. Work was done spontaneously, motivation was generated within the group,

610 Part Xill

Paper: A History of the SNOBOL Programming Languages

and schedules were either nonexistent or generated internally to ensure adequate
progress.

Since the development of SNOBOL spanned such a short period of time, fairly accurate
manpower estimates are possible for it. Dave, Ivan, and I were involved for about nine
months from the inception of the design to the completion of the first implementation. In
addition, Laura White Noll provided about four months of programming support. Allow-
ing for our other responsibilities, approximately one and one-half man-years were in-
volved altogether.

SNOBOL2 was also produced in a relatively short time with a manpower expenditure of
about two man-years. SNOBOL2 blended into SNOBOL3, but perhaps an additional two
man-years were expended before the first public version appeared, although the time
spent on subsequent maintenance was significant.

For SNOBOLA4, accurate figures are impossible to determine. Part of the problem lies in
the continuous evolution of design and development of SNOBOL4 over a period of years,
making it difficult to know when one aspect ended and another began. Another confusing
aspect was the responsibilities of the personnel involved. These duties became increas-
ingly complex as the project continued. Jim Poage and I had major management responsi-
bilities unrelated to SNOBOL4. As a rough estimate, perhaps six man-years were ex-
pended before the first running version of SNOBOL4 was available at BTL.

BTL always provided good physical support for SNOBOL. As far as costs are con-
cerned, the major item was computer time. Although there were internal computer bud-
gets, the accounting was never carried to the level of the persons involved in SNOBOL.
Costs of SNOBOL development probably were never identified as such but instead were
lumped with other projects. Certainly we used the computer resources at our disposal lav-
ishly. In the absence of budget constraints, we felt that computer time was (in some
sense) cheaper than our time, and we did not hesitate to make repeated batch runs to cor-
rect small errors if that speeded our work. While it was a luxury to have virtually unlimited
computer access, budgets were only one constraint. We frequently were hampered by
batch-mode operation and poor turnaround time, especially in the period between 1966 to
1968 when the second-generation computer facilities had become saturated and the transi-
tion to third-generation facilities introduced inevitable problems. Many entries in the
SNOBOLA4 log indicate continued frustration with computer facilities to the point that in-
formation about design and implementation is meager by comparison (Griswold, 1966—
1969).

With the development of SNOBOLA4 into a substantially larger project than any of the
earlier languages had been, support of documentation, distribution, and maintenance by a
small group became an increasing problem. The use of computer systems to support the
work became essential. Emphasis was placed on document preparation systems, and we
became leaders in introducing this technology to BTL. We first used TEXT90 and then
TEXT360 (LeSeur, 1969) when the Holmdel Laboratory converted to third-generation
hardware. The installation of ATS (IBM, 1969) provided the first interactive system for
our use, and substantially reduced the effort of document preparation. We also developed
a considerable amount of our own software (implemented in SNOBOL4, of course), in-
cluding document formatting languages with interfaces to line printers and photocomposi-
tion equipment (Noll, 1971). As a result, the first Prentice-Hall book was delivered to the
publisher as line-printer output in camera-ready form and the second edition was photo-

SNOBOL Session 611

Ralph E. Griswold

composed. The use of camera-ready material significantly shortened the production pe-
riod, and the use of a number of programs for tabulation and indexing produced unusually
error-free copy for this kind of material.

Personnel support was another matter. While we generally favored a small, closely knit
design and implementation group, there were many times when programming support and
clerical help would have been welcome. What little help that was provided came in the
form of temporary assignments: summer employees (as in the case of Lee Varian) or inter-
nal, rotational internships designed to broaden the background of employees by tem-
porary assignments (Al Breithaupt and Howard Strauss were in this category).

SNOBOL4 produced our first serious manpower problem. Despite the enthusiasm with
which SNOBOLA4 was received and the accompanying publicity, no additional personnel
support was available. Late in 1966, Jim Poage asked for additional personnel in program-
ming support and clerical roles (Poage, 1966b). He listed 10 major areas in which work was
needed and commented:

It is unreasonable to expect that the people now working on SNOBOLA4 (R. E. Griswold, 1. P.
Polonsky, and J. F. Poage) will be able to do all of the tasks listed, much less be willing to do
them. Support for the SNOBOL4 effort is absolutely essential in the areas of debugging, the addi-
tion of routine features to all versions of the system, distribution of corrections to users, and con-
version of SNOBOLA4 to operate under MULTICS and TSS.

Nonetheless help was not forthcoming, and much of the burden of clerical work—even to
making tape copies—fell to the developers themselves.

Certainly the attitude of BTL toward SNOBOL4 was reflected in its support of the
project. Although SNOBOL4 was in considerable use within BTL and had received much
favorable outside reaction, BTL’s attention was directed toward the many important and
pressing Bell System projects. SNOBOLA4 could at best be considered peripheral. Because
of its success, it was tolerated. The persons involved were allowed to work without signifi-
cant hindrance. The lack of a formal project structure was mainly beneficial. Project mem-
bers communicated informally but frequently. The notorious *‘11:15 lunch table’’ was the
site of many exciting technical (and not-so-technical) discussions. The absence of a formal
reporting structure, committee meetings, regular reports, and so on permitted the small,
closely knit group to operate efficiently and effectively.

The local attitude toward research was exemplified by the ‘‘sand box’’ philosophy of
our director, Bill Keister, who once told me that if you gave talented persons good facili-
ties and left them alone, occasionally something good would happen (Keister, 1970).
Clearly he placed SNOBOL in this category. There was no interference with our design
nor were any features mandated by the needs of other projects at BTL.

1.13. The Release of SNOBOL

With the enthusiastic reception of SNOBOL within BTL, we were anxious to release it
to outside users. Most software is developed with the goal of some sort of distribution to
the computing community. In academic institutions, distribution of software is generally
the concern and responsibility of the authors. Commercial ventures are predicated on dis-
tribution. SNOBOL, however, was developed within an industrial research organization
and the original goal of the creators was to produce a tool for research going on there.

In 1963 there was little awareness within the computing community of the value of soft-

612 Part XIll

Paper: A History of the SNOBOL Programming Languages

ware. Most of the thorny issues regarding the protection of investments and proprietary
rights had not been addressed. While BTL had mechanisms for reviewing and approving
release of internal information outside the company, these procedures were designed for
talks and papers. The specific question of the release of computer programs had not yet
been addressed, nor was the management of the company then really aware of the signifi-
cance of software.

Since we were anxious to release the SNOBOL system to installations outside BTL,
this situation posed a problem. Clearly making an issue or test case of SNOBOL to get a
corporate decision and policy would not speed SNOBOL’s release. Dave Farber took the
position that, in the absence of a policy that prevented release of a program, approval to
give a talk or paper on the program constituted release of that program as well.

Using this basis, the first release of SNOBOL was obtained by release of the original
SNOBOL paper (Farber et al., 1963a) for ‘‘publication in SHARE Secretary’s Distribu-
tion SSD*’ (Renne, 1963). The SNOBOL system subsequently was available to IBM
7090/94 users through SHARE.

Most of the interest in SNOBOL was in universities. With BTL’s traditional identifica-
tion with academic institutions, there was considerable management support for the distri-
bution of SNOBOL outside BTL. However, as more and more of the work in BTL shifted
from hardware to software there was increasing corporate concern with protection of the
company’s investment in software and its proprietary rights in this area. Early attempts to
provide this protection centered on patents. Patentability became an issue for SNOBOL
with the request for publication of an internal memorandum on the SNOBOL pattern-
matching algorithm (Griswold and Polonsky, 1963a). Release of the paper was held up for
nearly a year before BTL decided not to attempt to patent the algorithm (Renne, 1964).

Approval for release of SNOBOL3 outside BTL was granted in October 1964 with the
comment (Keister, 1964):

Since SNOBOL is a computer language which solves no particular problems directly and dis-
closes no proprietary information, it is agreed that we could release information on recent modifi-
cations to this language. This can consist of user’s manuals and program listings in appropriate
form. We should use our judgement in individual cases as to whether the distribution of this infor-
mation is to the benefit of the Laboratories and will contribute to advances in the programming
art. The Patent Department should be kept informed of the institutions and individuals to whom
we are releasing this information.

This process was followed and the Patent Department was notified periodically as copies
of the SNOBOLS3 system and its documentation were distributed.

Meanwhile the Patent Department continued to work on the patentability of computer
programs, with SNOBOLS3 as one of its specific test cases. We felt that it was in the best
interests of BTL and the computing community for SNOBOLS3 to be freely distributed.
We therefore took a stand in opposition to the Patent Department. Many discussions fol-
lowed and devolved into the intricacies of patent law. We were told that Euclid’s algo-
rithm could have been patented if it had not, unfortunately, been previously disclosed.
Our sarcastic suggestion of a patent disclosure in the form of the initial state of core stor-
age just prior to execution was considered to be reasonable (Kersey, 1967).

Our management supported our position on the value of the public release of SNO-
BOL3. Eventually the Patent Department capitulated with the statement (Hamlin, 1965):

In view of the public disclosure of the SNOBOL program in 1963, this subject matter does not

SNOBOL Session 613

Ralph E. Griswold

appear to contain sufficient patentable novelty at this time to warrant the filing of an application
for Letters Patent thereon.

Thus the first release of the original SNOBOL paper (Renne, 1963), which resulted in plac-
ing SNOBOL in the public domain, became the ultimate basis for public release of all sub-
sequent material related to SNOBOL.

Release of SNOBOL4 outside BTL was of concern early in 1966 and release was ob-
tained in May with the comment (Poage, 1966a):

In the attached letter . . . dated October 20, 1964, principles were established for releasing
information concerning SNOBOL outside of Bell Laboratories SNOBOLA4, aithough dif-
ferent in syntax and implementation from SNOBOL, was not sufficiently new to consider for pa-
tent application. Therefore . . . the principles established in the attached letter should apply
also to information concerning SNOBOL4. Further, since some economic benefit might be
derived from the completed SNOBOL4 system, it was agreed that the final version should be sub-
mitted for copyright.

Once again the original release of SNOBOL provided the basis for releasing a new lan-
guage. The phrase ‘‘final version’’ deserves note, since SNOBOL4 never reached a final
version as such.

The issue was not completely settled until 1973 (Hirsch, 1973):

SNOBOL, in its various forms, has been one of the most widely distributed of the Bell Labora-
tories—developed programs. Of the several versions of SNOBOL, the most current are designated
as SNOBOL4 and SNOBOLA4B. It is understood that the distribution of SNOBOL over the years
has resulted in useful feedback and generally favorable reactions from those in the computing
community at large.

Because of the considerable administrative burden in reviewing individual requests for SNO-
BOL4 and SNOBOLA4B, and because of the large number of copies already available to others,
the Patent Division, with the concurrence of the Technical Relations Division, hereby grants a
blanket approval for requests for these current versions of SNOBOL. Accordingly, any present or
future requests for SNOBOL or its documentation need not be referred to the Patent or Technical
Relations Divisions for approval. . . .

The present grant of release approval is limited to the SNOBOL program (through versions 4
and 4B), and should not be considered applicable to other cases.

2. Rationale for the Content of the Language

2.1. Objectives

While the initial impetus for the development of SNOBOL was the need for a tool for
formula manipulation, by the time the design of the language was under way, areas of in-
terest had been extended to include graph processing and a number of text manipulation
problems. Basically the objective was to provide a general-purpose language for manipu-
lation of nonnumerical scientific data, such as formulas, that could be naturally repre-
sented by strings of characters. The interpretation of this objective was strongly in-
fluenced by the fact that we were oriented toward use of computers in research. An
important criterion used in the design process was the ‘‘naive user.”” We deliberately tried
to produce a language that would be suitable for the person who was not primarily a pro-

614 Part Xili

Paper: A History of the SNOBOL Programming Languages

grammer. We expected programs-to be relatively small. In fact, the first implementation
limited program size to 2000 ‘‘elements’’ (operators, operands, and so forth).

A main philosophical view emerged in the early design efforts: ease of use. To us, this
implied several design criteria:

1. Conciseness: the language should have a small vocabulary and express high-level op-
erations with a minimum of verbiage.

2. Simplicity: the language should be easy to learn and understand.

3. Problem orientation: the language facilities should be phrased in terms of the opera-
tions needed to solve problems, not the idiosyncrasies of computers.

4. Flexibility: users should be able to specify desired operations, even if these opera-
tions are difficult to implement. In particular, compile-time constraints should be
minimized to allow maximum run-time freedom.

These objectives had several consequences, most of which can be characterized as a
disregard for implementation problems and efficiency. This was a conscious decision and
was justified by our contention that human resources were more precious than machine
resources, especially in the research applications where SNOBOL was expected to be
used. Our criterion for evaluating a proposed feature was more how it ‘‘felt’’ to us as pro-
grammers than how it conformed to conventional design criteria.

Specific consequences of this approach in SNOBOL were a single data type and the
absence of declarations. In order to accommodate numerical computations in SNOBOL,
arithmetic was performed (at least conceptually) on strings of digit characters that repre-
sented integers. This feature did not require declarations, and error checking was per-
formed at run time. Declarations were viewed primarily as an aid to the implementation
(Griswold, 1972a, p. 44), allowing compile-time decisions and the generation of efficient
code. Since SNOBOL had only a single data type, the string, the most obvious declaration
would have been for string length, either a fixed value or a maximum. However, the design
criteria led us to support varying length strings with no specification by the user, placing
all the burden of supporting this feature on the implementation. Similarly, SNOBOL con-
tained no source-language storage management operations, again requiring the implemen-
tation to support allocation and garbage collection automatically.

From a language design viewpoint, such features amount to a design philosophy that the
user of the language should not have to worry about how the computation is performed or
what the actual implementation details are, but instead should be able to concentrate on
the solution of problems. Without question, this philosophy was carried to the extreme in
SNOBOL: deliberately and consciously so. It was the beginning of an attitude which I
have sometimes described as ‘‘orthogonality to the mainstream.”’

2.2. Influence of Other Languages

One of the most fundamental problems we faced in the design of SNOBOL was deter-
mining the basic string manipulation operations and designing a notation for them. While
algebraic languages had the well-established notation of mathematics as a natural basis for
the elements of notation, no such independent notation existed for string manipulations.
In developing the basic operations and notation, we were strongly influenced by earlier
languages in this area.

SNOBOL Session 615

Ralph E. Griswold

Ivan and I were most familiar with SCL while Dave was more knowledgeable about
COMIT. We had access to IPL-V, but we knew of other potentially relevant programming
languages such as LISP only vicariously.

Since no information about SCL was ever released outside BTL, it is natural for observ-
ers to credit COMIT as the progenitor of SNOBOL. To us, however, SCL was a much
more immediate influencing factor. The following quotation from the introductory section
of the SCL manual (Lee et al., 1962) characterizes its intent:

The Symbolic Communication Language (SCL) is a language designed primarily for the pro-
cessing of symbolic expressions. The basic unit which SCL deals with most conveniently is a line.
A line may be an equation, an algebraic expression, a sentence, a set of pairs, etc. In mathemat-
ics, one often begins with a line, say an equation, and derives from it many other lines. Some of
these derived lines are more important than others and are usually assigned a number. The general
format in SCL is very much the same. The commands in SCL permit one to modify a line; the
resulting line then appears next to the original line. If the new line is one which should be marked,
a name can be assigned to that line. In this way it becomes particularly convenient to deal with
mathematical expressions in SCL.

Since SCL had a strong influence on SNOBOL, it is appropriate to consider the factors
that influenced SCL. Unfortunately, the only available source of information is the SCL
manual. This manual references much of the prior literature on symbol manipulation lan-
guages, machine learning, and language translation. There is mention of IPL, LISP,
COMIT, and macro processors, but no indication of how any of these might have in-
fluenced the design of SCL.

Aside from very different syntaxes, there is one clear difference between COMIT and
SCL. While COMIT was oriented toward language translation with ‘‘constituent’ units
that typically were words, SCL was oriented toward algebraic manipulations on parenthe-
sis-balanced strings of characters. While both SCL and COMIT had pattern matching and
string transformation facilities, COMIT’s facilities were constituent-based, while those of
SCL demanded balanced parentheses. Both COMIT and SCL were organized around the
concept of a workspace on which operations were performed. Other data was contained in
‘‘shelves’ in COMIT and ‘‘data buffers’” in SCL. Both SCL and COMIT were essentially
single data type languages in which numerical computation was awkward. In COMIT, (in-
teger) arithmetic was managed through operations on constituent subscripts. SCL, on the
other hand, performed arithmetic only on rational numbers represented in prefix form as
strings of character digits.

While it is difficult even for the designers of a language to recognize the influences of
systems with which they are familiar, it was certainly the case that both SCL. and COMIT
were well known to us and we considered both to be inadequate for our needs. The result-
ing design of SNOBOL is certainly a synthesis of some features from both languages along
with the introduction of new ideas. The extent of influence of SCL and COMIT is shown
by that fact that SNOBOL contains their properties of basic string orientation, pattern
matching and string transformation, and limited arithmetic facilities. SNOBOL departs by
introducing the complete string (as opposed to a workspace of characters) as a data object
that can be assigned to a variable. A more significant difference to users was that SNO-
BOL was considerably simpler than either COMIT or SCL, yet it provided more facilities
for most text manipulation problems. Both SCL and COMIT were relatively slow and in-
efficient in their use of storage. Since we were confident that we easily could implement a

616 Part Xl

Paper: A History of the SNOBOL Programming Languages

language that made considerably more economical use of resources, efficiency and storage
utilization were not serious concerns. Similarly, neither SCL nor COMIT permitted really
large programs, so we did not think in these terms in the design of SNOBOL.. Therefore
SCL and COMIT had the indirect influence of causing us, for the most part, to disregard
questions of efficiency and the possible consequences of large SNOBOL programs.

The influence of machine language is shown in the indirect referencing operator, which
elevated the apparently low-level operation of indirect addressing to a high-level language
and allowed the value of an identifier to be used as a variable. This operation proved to be
extremely important, since it provided a method for representing associative relationships
among strings and hence for representing structures in a pure string context. Since indirect
referencing could be applied to any string constructed at run time, it implied the existence
of an internal run-time symbol table.

2.3. Basic Decisions

The choice of syntax for SNOBOL was closely related to the selections of its control
structures and was primarily motivated by the desire to make SNOBOL convenient for
the ‘‘naive user.”” In the choice of syntax, the influence of COMIT is evident. The state-
ment format, in which an operation was specified, resembles that of COMIT. However, in
SNOBOL the subject specifies the string on which the operation is performed, while in
COMIT the string is implicit, namely the current workspace. The selection of the next
statement to be executed, conditioned on the success or failure of the operation, is found
both in COMIT and in SCL. In SCL, however, it resembles the multiple-exit operations of
machine order structures of the time. The decision to rely on conditional gotos instead of
introducing more sophisticated control structures was a deliberate one. We felt that pro-
viding a statement with a test-and-goto format would allow division of program logic into
simple units and that inexperienced users would find a more technical, highly structured
language difficult to learn and to use. The decision not to introduce reserved words or
something similar was motivated by the same concern. The initial enthusiastic response to
the simplicity of the language reinforced this decision for future development. Changing to
a more ‘‘modern’’ syntax was not seriously considered, even for SNOBOL4.

At the time of the development of SNOBOL, its free-form syntax with the absence of
fixed field positions and lack of limitations on the length of identifiers was somewhat of a
novelty. Again, these choices were deliberate and were designed to make SNOBOL easy
to use. Users of SNOBOL, accustomed to languages with more rigid syntaxes, greeted the
new freedom enthusiastically.

The positional syntax of the statement with a subject followed by an operation was mo-
tivated by the feeling that the subject as a focus of attention was a useful construct and
would aid users in organizing their approach to writing programs. The importance of this
view is described by Galler and Perlis (1970, p. 78).

The most controversial aspect of the syntax of SNOBOL was its use of blanks. The
decision not to have an explicit operator for concatenation, but instead just to use blanks
to separate the strings to be concatenated, was motivated by a belief in the fundamental
role of concatenation in a string-manipulation language. The model for this feature was
simply the convention used in natural languages to separate words by blanks. Further-
more, an explicit operator for concatenation was thought to be overbearing, especially
considering the frequency of the appearance of concatenation in SNOBOL programs.

SNOBOL Session 617

Ralph E. Griswold

(The consequence of the ambiguous use of blanks, such as to separate subjects from the
operations performed on them, is discussed in Section 3.3.1.)

One important early decision was to include backtracking in SNOBOL pattern match-
ing. COMIT did not include backtracking, so that once a constituent matched, no alterna-
tive match was attempted, even if a subsequent constituent failed to match. Yngve justi-
fied this decision on the basis that someone had shown a pattern that would take 300 years
of computer time to complete if backtracking were allowed (Yngve, 1964). We had ob-
served that COMIT pattern matches sometimes failed when they should have succeeded,
at least intuitively. We felt that it was conceptually important for a pattern to be a specifi-
cation of the structural properties of a string and that all alternatives should be attempted
to fit the pattern to these structural properties. The theoretical possibility of pattern
matching taking arbitrarily long did not seem as important to us as the practical issues. In
any event, we did not believe that this problem would arise in practice although steps were
taken to minimize the problem (see Section 3.3.3). I know of only one instance where a
pattern match actually took so long that it was mistaken for an endless loop within the
system.

It is interesting that the issue of character sets was never given much consideration,
despite SNOBOL'’s emphasis on string manipulation. The 48-character BCD character set
was in general use when SNOBOL was designed, and it was accepted without much
thought. Even with SNOBOL4, where various implementations were undertaken on com-
puters with characters sets of different sizes, orderings, and graphics, no design consider-
ation was given to the problem. Instead, it was considered to be an implementation prob-
lem specific to the target computer.

Machine independence and portability were given no consideration in the original de-
sign of SNOBOL, although use of string-manipulation macros (Mcllroy, 1962) in the im-
plementation laid the basis for later work. Our horizons were limited and our concerns
were for providing a string manipulation language for the local computer, an IBM 7090. At
that time, all BTL computer centers had 7090s as their main computers, and the possibility
of implementations for other computers had not yet risen.

2.4 Progression to SNOBOL2 and SNOBOL3

Users quickly outgrew SNOBOL and the absence of certain facilities in SNOBOL made
some programming tasks impractical or impossible. In one sense, SNOBOL was too sim-
ple. In another sense, the success of SNOBOL attracted users from areas in which the use
of SNOBOL had not been anticipated.

An example of the deficiency of SNOBOL was the absence of any direct method for
determining the length of a string. This computation had to be programmed using pattern
matching. A naive, although typical, method was to remove a character at a time until the
string was exhausted, meanwhile incrementing a running count. Since the length of every
string was readily accessible internally, this deficiency was doubly indefensible. There
were no numerical comparison operations and these computations also had to be accom-
plished by pattern matching.

An obvious solution to these and a host of similar problems was the introduction of
built-in functions to provide a repertoire of operations under a single syntactic cloak.

While the repertoire of built-in functions in SNOBOL?2 handled the most commonly
needed computations, special needs (such as interfacing operating system facilities) could

618 Part Xl

Paper: A History of the SNOBOL Programming Languages

not be accommodated by any fixed set of built-in functions. This motivated the introauc-
tion of an external function mechanism (Farber et al., 1965b) whereby users could aug-
ment SNOBOL2 by functions coded in assembly language. This facility was used exten-
sively (Manacher, 1964; Manacher and Varian, 1964; Griswold and Varian, 1964;
Flannery, 1964; Griswold and Polonksy, 1965, Griswold, 1965, 1966a; Calise, 1966; Hall
and McCabe, 1967; Wilson, 1967).

Like SNOBOL, SNOBOL2 lacked any mechanism for allowing the programmer to ex-
tend the operation repertoire at the source level. More serious, perhaps, was the fact that
there was not even a mechanism for programming subroutines at the source level. While a
subroutine linkage mechanism could be simulated using indirect referencing and com-
puted gotos, this technique was awkward and was not obvious to the novice. By modern
standards, most SNOBOL programs were extremely unstructured.)

The introduction of a mechanism for defining functions distinguished SNOBOL3 from
SNOBOLZ2. In this case, serious design problems arose. SNOBOL and SNOBOL.2 had no
block structure or mechanism for the declaration of the scope of identifiers, and all
labels were global. We decided to retain this ‘‘simplicity’’ by adding a built-in function,
DEFINE, which established the existence of programmer-defined functions at run time.
The mechanism itself was simple. The bodies of defined functions were written as seg-
ments of a SNOBOL3 program. When a DEFINE was executed at run time, the entry
peint, function name, formal arguments, and local variables were bound. This mechanism
avoided the need for declarations and provided considerable run-time flexibility, since the
arguments of DEFINE, including even the name of the function, could be computed at run
time. By saving and restoring the values associated with the formal parameters and local
variables on call and return, respectively, a form of dynamic scoping was obtained and
recursion worked properly.

In the design of the defined-function mechanism, the original SNOBOL design philoso-
phy was clearly in conflict with contemporary concepts of program structure and the
growing needs of users. The flexibility of run-time definition with the possibility of redefin-
ition and computation of function attributes had some appeal for esoteric applications, but
the lack of scope declarations and locality of labels virtually precluded well-structured
programs and separately compilable modules. The mechanism chosen was partly the re-
sult of adherence to the orginal SNOBOL tradition and philosophy and partly the unwil-
lingness to become involved in more substantive issues that an alternative approach would
have forced. Another factor was limited personnel resources, which certainly inhibited
radical departures from previous design. Even the chosen design for defined functions was
set aside until Lee Varian became available on a summer assignment. Since Dave, Ivan,
and I were doing essentially all of the implementation, distribution, documentation, and
maintenance, other language features that would have required a substantial implementa-
tion effort were virtually unthinkable.

2.5. SNOBOL4

Despite the addition of the function mechanisms, SNOBOL3 retained most of the origi-
nal SNOBOL design: a single string data type, static specification of patterns with a lim-
ited repertoire of pattern types, and indirect referencing as the only mechanism for repre-
senting structural relationships.

Work on structural manipulation functions (Griswold and Polonsky 1965 and Griswold

SNOBOL Session 619

Ralph E. Griswold

1965) had shown the usefulness of including facilities for processing data structures in a
string-based language. Other inadequacies of SNOBOL3 were also apparent, notably the
static, limited range of pattern specification and particularly the absence of a mechanism
for specifying alternative matches.

The solutions to these problems were not so evident. While there were many sugges-
tions, including a multitude of specific data structures and a variety of syntactic elabora-
tions for pattern specifications, the unification needed for good language design was lack-
ing. For my part, I resisted further embellishments to SNOBOLS3. In addition, SNOBOL3
generally satisfied most of the users’ needs and there was not the pressure to go to a new
language that there had been in the transition from SNOBOL to SNOBOL.2.

As mentioned in Section 1.8, the pressure eventually came from another source—the
impending transition to third-generation hardware. The possibility of new computers com-
pounded our earlier concerns with implementations of SNOBOL and SNOBOLS3 done
outside BTL. These independent implementations had proved difficult because of lack of
previous consideration of machine independence and because the only implementation in-
formation was the assembly-language listings of the programs. We began to see the basis
for a portable implementation in the extension of Mcllroy’s string manipulation macros to
a complete set of machine-independent assembly-language operations.

During this period, the idea came that satisfied my reservations about the design of a
new language—the concept of patterns as data objects that could be built, combined, and
manipulated dynamically as opposed to the static pattern specification of SNOBOL3.

While SNOBOL introduced a new, simple string language and SNOBOL2 and SNO-
BOL3 fleshed out this design, SNOBOL4 departed radically from earlier work. Much of
the simplicity of SNOBOL3 was abandoned for greater range and more powerful features.
The semantic content of SNOBOL4 was substantially greater than that of SNOBOLS3.
While much of the early philosophy of flexibility was expanded, SNOBOL4 became a gen-
eral-purpose language where SNOBOL3 had been a string manipulation language. The ra-
tionale for this change is found in the evolving sophistication of both the users and the
designers. In a sense, it was an inevitable consequence of professional development and
the interest in exploring new issues.

The issue of compatibility with previous languages was first seriously raised in the de-
sign of SNOBOLA. Except for a few minor syntactic changes, SNOBOL2 and SNOBOL3
were upward compatible with SNOBOL.. There was concern that substantial changes in
syntax for SNOBOL4 would make SNOBOLS3 programs obsolete. We felt, however, that
in order to realize the potential of new ideas, substantial changes were needed and that it
would be best to make a clean break, regardless of the impact on SNOBOL3 program-
mers. The attempt to maintain upward compatibility in the progression from COMIT to
COMIT II (Yngve, 1972) provided us with an example of the inhibiting effects of the alter-
native choice.

However, features of SNOBOLS3, except those specifically marked for redesign, were
not critically examined for modification or deletion. For example, indirect referencing was
included in SNOBOL4 without much thought, despite the fact that its primary justification
(representation of structural relationships) no longer applied with the introduction of
arrays and defined data objects in SNOBOLA4. Similarly, the lack of declarations per-
sisted, even though the variety of data types that had been introduced would have made
type declarations meaningful. Defined functions in the style of SNOBOL3 were also re-
tained despite the otherwise radical departure of SNOBOL4 from SNOBOL3.

620 Part Xill

Paper: A History of the SNOBOL Programming Languages

The computing environment at BTL until this time had been entirely batch oriented and
we had not given any consideration to operation in an interactive environment, although
there was beginning to be local use of outside time-sharing services. Since MULTICS was
slated to replace the batch operation with a BTL-wide time-sharing facility, language fea-
tures for isiteractive computing might have been given major consideration. I recall, how-
ever, that we gave relatively little attention to this issue. We were influenced by the opin-
ion of local users of time sharing who placed more importance on run-time capabilities
than on interactive compiling (Sinowitz, 1966).

The main attributes of SNOBOL4 that deserve mention are:

The multitude of data types.

Patterns as data objects with a large variety of pattern types.

Data structures, including arrays, tables, and defined (record-type) objects.
Run-time compilation.

Unevaluated expressions.

i

The need for more than one data type was a consequence of patterns as data objects.
The inclusion of other data types followed naturally, but slowly. The gradual addition of
data types characterizes the evolutionary development of the design of SNOBOL4. SNO-
BOLAM started with three data types: strings, integers, and patterns. In late 1966, arrays
and defined data objects were added. Real numbers, code, and names were added in 1967,
unevaluated expressions were added in mid-1968, and tables in mid-1969.

The introduction of data types such as integers and real numbers raised the issue of
coercion, the automatic conversion of the data type to suit the context. We viewed coer-
cion together with the absence of declarations as an important aspect of ease of use. Thus
a string representing an integer could be read in and used in arithmetic contexts without
specification on the part of the programmer. Mixed-mode arithmetic and other polymor-
phic operations followed naturally from this philosophy.

Patterns as data objects represented a major design change. Previously each type of pat-
tern was represented by a different syntactic notation and each pattern had to be explicitly
written in line at the place where it was used. The addition of new pattern types in this
scheme would have required a proliferation of syntax. Furthermore, the requirement for
statically specified, in-line patterns placed practical limitations on their complexity. With
patterns as data objects, however, an unlimited number of pattern types was possible
without additional syntax. Built-in patterns were included as the initial values of selected
identifiers and a repertoire of pattern-valued functions was provided as a means of con-
structing more complex patterns. Thus patterns could be built incrementally °reducing the
complexity needed at each step, and the same pattern could be used wherever needed
without the user having to duplicate its construction.

Data structures were significant in providing a natural method of organizing data. In the
spirit of SNOBOL, SNOBOLA4 arrays were designed so that they were created at run time
with dimensionality and size that could be computed. The decision to treat arrays as ob-
jects with a distinct data type allowed passing arrays as values and treating them like other
program objects. Again in the spirit of SNOBOL, there were no type declarations for
arrays and hence they were heterogeneous.

Defined, record-type data objects were added to provide a mechanism whereby the user
could create data structures. This method was motivated by the opinion that no number of

SNOBOL Session 621

Ralph E. Griswold

specific built-in data types such as lists, trees, and stacks, could satisfy all user needs.
Thus the philosophy was to provide a means whereby the user could construct any kind of
data structure and define operations on it.

Tables, which provided a kind of associative data structure, had been suggested a num-
ber of times, notably by Doug Mcllroy and Mike Shapiro. It was Doug’s persistence that
resulted in their addition to SNOBOL4 in mid-1969, at a very late stage in the development
of SNOBOLA4 and at a time when there were very few remaining personnel resources for
additional changes. Doug commented, as I recall, that tables seemed like a natural thing to
have in a language such as SNOBOL4, since many of the applications of SNOBOLA4 in-
volved the need for operating on symbol tables at the source-language level. This one in-
stance of outside influence, which proved to be very beneficial, stands out in my mind,
since most other issues of language design were raised and decided within the project
group.

The strong influence of a flexible, machine-independent implementation is shown in run-
time compilation and unevaluated expressions. The interest in run-time compilation dates
back to the influence of SCL, which not only had run-time compilation, but in fact rou-
tinely required its use. SNOBOL was designed with the idea of run-time compilation, in
which labels were treated as variables that had their associated statements as values. The
idea was that if a new value was assigned to a variable that occurred as a label, this new
value would be considered as a string representing a statement and consequently com-
piled. While the treatment of labels as variables was supported, compilation of newly as-
signed values was not. As a result, if a label was accidentally used as a variable in a pro-
gram, subsequent execution of the statement corresponding to that label produced the
error message ‘‘RECOMPILE NOT ENABLED’’ (which soon became infamous).

SNOBOL2 and SNOBOL3 did not attempt run-time compilation, but the idea was not
forgotten. In the design of SNOBOLA4, the issue of run-time compilation was again raised,
but a method of handling it still was not evident (the SNOBOL method was clearly unsat-
isfactory, since an accidental use of a label as a variable, possibly depending on data,
could destroy a program). It was the implementation of SNOBOL4 that eventually sug-
gested the design of run-time compilation.

To provide machine independence, portability, and flexibility, the implementation was
designed around the generalization of Mcllroy’s string macros as a hypothetical assembly
language for an abstract machine (Griswold, 1972a, 1976a). To achieve uniformity, all data
were represented in terms of descriptors, the “‘word’’ in this abstract machine. Each
SNOBOL4 data object was represented by a descriptor, either containing the datum or a
pointer to it. An array, for example, consisted of a descriptor pointing to a block of de-
scriptors, each of which represented an element of the array. Code compiled for a SNO-
BOLA4 program also consisted of a block of descriptors. The idea for run-time compilation
came as a result of the observation that a block of code could be treated as a source-lan-
guage data object merely by having a descriptor point to it. It was a simple matter to add a
function that would call the compiler at run time to convert a string representing a se-
quence of SNOBOLA4 statements into a block of code, thus augmenting the original
source-language program. In fact, it took just two days from the inception of the idea until
run-time compilation was available in SNOBOLA4.

An essential component for the practicality of this feature was the availability of the
compiler during program execution. This was the consequence of environmental factors

622 Part XIlI

Paper: A History of the SNOBOL Programming Languages

and the desire for a portable implementation. In the first place, the compiler was small
(since SNOBOLA4 has few compile-time operations and the interpretive implementation
avoided the need for a bulky code generator or optimizer). As a result, there was not a
great motivation to segment the implementation into a compilation component followed
by an execution component. In the second place, the desire for a portable system dis-
couraged an organization that required linkage between separate segments, overlays, and
the like. Thus the compiler was just ‘‘there,”” which turned out not only to be handy, but
also actually to make run-time compilation conceivable.

One concern from the initial SNOBOL design was dynamic components in patterns.
The need for such a feature is typified by a specification such as locating two occurrences
of the same character in a string. In SNOBOL this was handled in a rather ad hoc fashion
by ‘‘back-referencing’’ identifiers that had values assigned earlier in a match. A more gen-
eral problem, however, lies in recursive definitions such as those found in production
grammars for languages.

The solution to these problems in SNOBOLA first came in the form of **deferred evalua-
tion,”” in which a variable could be flagged so that its value was not fetched until it was
encountered during pattern matching. Thus a pattern could contain a deferred reference to
itself, producing the effect of a recursive definition. While this scheme solved some of the
problems related to the need for dynamic evaluation during pattern matching, it did not
solve the general problem.

Again the implementation suggested a better mechanism. Since expressions were
compiled into sequences of descriptors within code blocks, a descriptor pointing to the
code for an expression could also be a source-language data object. As a result any expres-
sion could be left ‘‘unevaluated’’ by providing an operator that simply returned a pointer
to the appropriate position in the code and then skipped over the code instead of executing
it. Subsequent evaluation of the code could then be accomplished by temporarily changing
the position for execution to the previously unevaluated code. When appearing in pat-
terns, such unevaluated expressions were evaluated during pattern matching, which pro-
vided the same facility as deferred evaluation. Since any expression could be left uneval-
uated, however, there was the possibility for performing any arbitrary computation during
pattern matching. With this feature, all the theoretical limitations of pattern matching were
removed. Not only was there a natural isomorphism between production grammars and
SNOBOL4 patterns (Griswold, 1975a, pp. 7-12, 233-234), but context sensitivity and
Turing grammars could be represented within SNOBOL4 patterns.

Experimentation was one consequence of the evolutionary development of SNOBOL4
and especially the continuing design with the availability of a flexible implementation. It
was easy to try out design ideas in practice and to modify or discard them on the basis of
actual use. While there were certainly ideas that were tried and discarded, most experi-
mental features were, in fact, retained in some form. This method of language develop-
ment was largely responsible for the large semantic size of SNOBOL4 compared with the
earlier SNOBOL languages

Most features suggested for SNOBOL4 were implemented. Among suggestions that
were not implemented were some cosmetic improvements, such as a program cross-refer-
ence listing, which was implemented experimentally but was never incorporated into the
official version, and structure dumps, which have since been incorporated, after a fashion,
in SPITBOL (Dewar, 1971) and SITBOL (Gimpel, 1974c).

SNOBOL Session 623

Ralph E. Griswold

2.6. Language Definition

Definition of the SNOBOL languages was always treated informally. The earliest docu-
mentation of SNOBOL included a BNF grammar describing the syntax, but the semantics
were dealt with in an informal manner (Griswold, 1963a). The first published paper on
SNOBOL treated the syntax informally as well (Farber er al., 1964a). This informality
continued with SNOBOL2 and SNOBOL3 (Farber ef al., 1966).

With SNOBOL4, more care was given to the definition of the syntax. Here the ““LSD”’
notation originally used by IBM for describing the syntax for PL/I was applied (IBM,
1970, pp. 241-242). Since SNOBOLA itself provides a notation for describing syntax, it is
not surprising that SNOBOL4 has been used to describe its own syntax (Griswold, 1966;
Griswold et al., Polonsky, 1971, pp. 226-229). The idea of enriching BNF-style syntax
description systems by adding constructions in the style of SNOBOL4 appears in Gris-
wold (1972a, pp. 261-264).

Language semantics were always treated casually by the designers of SNOBOL. It has
been a long-standing joke that the only real description of the formal semantics of SNO-
BOLA4 is contained in the program listing of the SIL implementation (Griswold, 1976b).
Despite the difficulties posed by SNOBOL4’s dynamic characteristics, work has been
done by others on more formal approaches to its semantics (Herriot, 1973a,b, 1974;
Mickel, 1973; Tennent, 1973; Stewart, 1975).

2.7. Standardization

Until SNOBOLA4, there was no serious consideration of standardization. In fact there
was a conscious decision to discourage both standardization and control by user groups.
However, dialects and variant implementations of SNOBOL3 done outside our group
were posing significant problems for users and the question of standardization for SNO-
BOL4 was considered. As a matter of philosophy, we felt that SNOBOL was a living lan-
guage and that change and experimentation were more beneficial than constraint and stan-
dardization. The machine-readable source was freely distributed to encourage
experimentation. In fact, standardization would have been impractical in any event, since
there was no mechanism to control or prevent the development of independent implemen-
tations or language variants.

However, the SIL implementation imposed de facto standardization on SNOBOL4 that
exceeded most of the deliberate standardization attempts. SIL implementations of SNO-
BOL4 are more nearly compatible than those of most other generally available program-
ming languages.

3. A Posteriori Evaluation

3.1. Meeting of Objectives

With the evolution of SNOBOL, SNOBOL2, SNOBOLS3, and SNOBOLA4, the original
objective of developing a tool for string manipulation gradually broadened to include a
wider range of non-numeric applications. The desire to provide a tool for our own research
became more a desire to provide a tool for a large community of users and to make contri-
butions to the design and implementation of programming languages.

624 Part Xl

Paper: A History of the SNOBOL Programming Languages

In retrospect, the original objectives were greatly exceeded, but the areas of application
for SNOBOLA4 (the only one of the SNOBOL languages now in significant use) are sub-
stantially different from those originally anticipated. For example, during the development
of SNOBOL, the designers gave no thought to potential uses for document formatting or
for computing in the humanities, although these have become some of the most significant
applications of SNOBOL4 (Griswold, 1977b). While SNOBOL has had some applications
in formula manipulation (Bailey et al., 1969; Rodgers, 1966; Roosen-Runge, 1967), the
problem that provided the initial motivation for the development of the new language, it
has never enjoyed significant popularity in this area. Similarly, use of SNOBOL as a com-
piler-writing tool was envisioned (Farber, 1963a), but the suitability of SNOBOL4 in this
area is at best controversial (Dunn, 1973; Hanson, 1973; Gimpel, 1976, pp. 406, 411-432;
Wetherell, 1978, p. 146). In fact SNOBOLA4 is not now widely used for implementing pro-
duction compilers.

For the areas in which SNOBOL4 has proved useful, the users generally like SNO-
BOL4 and feel that it meets its objectives (as they perceive them). SNOBOLA4, like its
predecessors, is the kind of language that has its adherents and ardent supporters (as well
as its detractors). It is similar to APL in this respect, although the feelings about SNO-
BOL4 generally are not as strong as those about APL.

It is interesting to note that not all users greeted the increased capacity of SNOBOL2,
SNOBOL3, and SNOBOL4 with enthusiasm. Some preferred the simplicity of the original
SNOBOL, and SNOBOL4 was resisted by some experienced programmers despite the
additional power it provided (Uhr, 1968; Mcllroy, 1977). ’

The objectives of the designers of the SNOBOL languages have not always been well
understood. In my opinion, the computing community as a whole has little accurate
knowledge of SNOBOL and treats it more by hearsay than by actual knowledge. While
there is a substantial amount of available material on the SNOBOL languages (Griswold,
1977b), effort is required to extract the real attributes of SNOBOLA4. In general, one must
use SNOBOL4 to understand it; it does not come naturally as yet another ‘‘algebraic’’
language might to a FORTRAN or PL/I user. Similarly, many persons are unaware of the
substantial differences between SNOBOL and SNOBOL4. Here a decision to go to an
entirely new name might have avoided the assumption that all the SNOBOL languages
were similar.

User acceptance has been strongly influenced by the ready availability of the SNOBOL
languages. From the earliest development, SNOBOL was distributed without charge or
restriction of use to anyone interested in it. Its source code was provided without restric-
tion, which facilitated its installation. For the most part, documentation and program ma-
terial were distributed by BTL without charge. An interested person had only to supply a
tape. Thus individuals and organizations with limited financial resources were able to get
the programs. With SNOBOL4 the portable implementation was made freely available,
and technical support was provided for implementation on a variety of machines. The ex-
change of program material for the portable implementation of SNOBOL4 in return for
effort freely given by implementors on other machines was essential, especially in the ab-
sence of vendor support or a commercial base. It is my opinion that this free distribution
and open attitude toward release of information was, in fact, essential to the acceptance
and success of SNOBOL. If SNOBOL had been protected, if its distribution had been
controlled, or if a charge had been made for the program material, it is likely that SNO-
BOL would have remaiiied one of the many interesting, but noninfluential ideas of com-

SNOBOL Session 625

Ralph E. Griswold

puter science. The use and influence of COMIT, for example, was probably substantially
diminished by tight control over release of the source program. For an interesting debate
of the issue of unrestricted distribution, see Galler (1968) and Mooers (1968).

3.2. Contributions of the Languages

SNOBOL is responsible, primarily, for introducing to high-level languages the idea of
the string of characters as a single data object rather than as a workspace or an array of
characters. This is a conceptual matter, and one of considerable importance, since the
treatment of a varying length string as a single data object permits a global view of string
processing that character aggregates inhibit.

One of the most formidable design problems faced by the architects of the SNOBOL
languages, particularly at the beginning, was the implementation of storage management
for a large number of varying length strings. However, the freedom that string data objects
provide the programmer is enormous. Compare the 127 shelves of COMIT and the 64 pos-
sible string variables and two data buffers of SCL to SNOBOL, where strings were simply
data objects in the sense that integers are data objects in FORTRAN.

SNOBOL’s most obvious specific contribution is a viable high-level approach to string
analysis through pattern matching. Where COMIT and SCL introduced pattern-matching
features that were intriguing but of limited practical use, SNOBOL, and SNOBOLA4 in par-
ticular, have made this tool generally well known and widely used.

More personally, I view the best points of SNOBOL to be the ease of use and its ‘‘com-
fortable feeling.”” It is somewhat like an old shoe. SNOBOL programmers characterize it
as a hospitable, friendly language that allows much to be accomplished quickly and easily.
Its *“‘one-line”” programs for problems such as character-code conversion and reformatting
data cards are famous.

Some of the esoteric features in SNOBOL4 have proved valuable and have allowed
comparatively easy treatment of otherwise intractable problems. Run-time compilation,
for example, permits SNOBOLA4 code to be imbedded in data, thus allowing easy run-time
extension of programs such as document processors (Griswold, 1975a, pp. 189-191, 270;
Anderson and Griswold, 1976; Conrow, 1977). Similarly, the capability to redefine any
built-in SNOBOL4 operator allows extensions and experimental simulation of more ad-
vanced language features (Griswold, 1975a, pp. 2630, 115, 256-257). This capability was
used by John Doyle to simulate extensions to pattern matching in SNOBOL4 (Doyle,
1975).

As SNOBOL progressed to SNOBOL2, SNOBOLS3, and then SNOBOL4, I applied one
personal benchmark: could problems be solved by the new language that were not practi-
cal with the old one? In each case, the answer was yes. There are two aspects to this mea-
sure. In some cases, ease of programming made the solution feasible in terms of the effort
or time required. As Kernighan and Plauger (1976, p. 84) remark, ‘‘many jobs will not get
done at all unless they can be done quickly.”” In other cases, solutions to problems that
were formerly intractable or unthinkable because of the degree of programming difficulty
became reasonable and attractive. This latter situation applies particularly to researchers
in areas such as the humanities, where sophisticated programming skills are less common.

626 Part Xlii

Paper: A History of the SNOBOL Programming Languages

3.2.1. Other Implementations

A measure of the importance of SNOBOL is given by the number of implementations
carried on outside BTL. Many other persons and groups decided to implement various
versions'of SNOBOL. One of the earliest implementations was an *‘ALGOLized’’ version
of SNOBOL for a Soviet computer (Kostalansky, 1967; Lavrov, 1968). Parallel to the de-
velopment of SNOBOL2 and SNOBOL3, there were several implementations motivated
both by the need for a SNOBOL language on machines other than the IBM 7090/94 and by
an interest in experimentation with extensions and changes. The first implementations
were completed for the RCA 601 (Simon and Walters, 1964), the PDP-6 (Guard, 1967), the
Burroughs 5500, the CDC 3600, the SDS 930 (Lampson, 1966; Kain and Bailey, 1967), the
IBM 360 (Madnick, 1966), and the IBM 1620 (Wilson, 1966). Many stories have been told
about the 1620 implementation. It was a pure interpreter, constantly reprocessing the
source program text. The call of a built-in function is said to have taken 40 seconds and
programs were (naturally) frequently left to run overnight. Nonetheless, this implementa-
tion apparently was satisfactory and is remembered with some fondness by its users.

With SNOBOL4, there was even more implementation activity by other groups. This
activity took two forms: implementations of the portable SIL system (which produced
standard SNOBOL4 implementations) and independent implementations with various
goals (which produced various dialects and language variants). The SIL system has at-
tracted implementors for two reasons: the desire for SNOBOLA4 on a specific computer for
which it was not available, and the interest in the implementation of portable software in
its own right.

As mentioned in Section 1.9, the first transporting of the SIL implementation of SNO-
BOL4 was done by Jim, Ivan, and myself, when we moved the IBM 7094 implementation
to the IBM 360 in late 1966. In 1967 and 1968, SIL implementations were started for the
CDC 6000 series (Gaines, 1968; Shapiro, 1969), the GE 635 (at the BTL Murray Hill Labo-
ratory), the UNIVAC 1108 (Osterweil, 1970), the RCA Spectra 70, the CDC 3600, the
Atlas 2 (Moody, 1972), the XDS Sigma 7 (Barker, 1973), the DEC-10 (Wade, 1970), and the
Datacraft 6000 (Datacraft Corporation, 1972). All of these implementations were com-
pleted. In the process, much valuable feedback was obtained about the language and prob-
lems in the design and structure of the implementation. In all, SIL implementations have
been undertaken for 40 different computers, and most have been brought to a working
state. Recently even an implementation for the IMSAI 8080 has been started. In the case
of some computers, several independent implementations have been done by individuals
who wanted the experience of implementing portable software, even though another im-
plementation was already available.

The relative inefficiency and large size of the SIL implementation of SNOBOLA4 has chal-
lenged a number of groups to attempt more economical implementations. CAL SNOBOL
approached the problem by severely subsetting SNOBOL4 to gain a dramatic perform-
ance improvement (Gaskins, 1970). SPITBOL produced the first efficient ‘‘compiler’’ sys-
tem that implemented a reasonable approximation to the entire language, including run-
time compilation (Dewar, 1971; Dewar et al., 1975; Berndl, 1975). FASBOL combined
subsetting with optional declarations to achieve very efficient implementations for the
UNIVAC 1108 and the DEC-10 (Santos, 1971). SITBOL proved that an interpretive im-
plementation could be a sufficiently efficient for production work (Gimpel, 1973b). SNO-

SNOBOL Session 627

Ralph E. Griswold

BAT combined some subsetting with new implementation techniques to produce a fast
batch compiler (Silverston, 1976a,b, 1977). Most recently MACRO SPITBOL, a machine-
independent and portable interpretive implementation has been developed (Dewar and
McCann, 1977). This system performs better than some implementations tailored to spe-
cific machines. To date, MACRO SPITBOL. has been implemented for the ICL 1900
(Dewar and McCann, 1974), the Burroughs B1700 (Morse, 1976), the DEC-10 (McCann et
al., 1976), the CDC 6000 series (Druseikis and Griswold, 1977), and the PDP-11, (Dewar,
1977).

In total there are some 50 implementations of SNOBOL4 currently available for differ-
ent computers and operating systems (Griswold, 1978a).

3.2.2. Dialects and Extensions

These implementations resulted in numerous dialects of the language. In FASBOL,
Santos added optional declarations to permit the generation of efficient code. SPITBOL
added a number of built-in functions and error recovery facilities that have proved useful.
SITBOL included most of the SPITBOL. enhancements and added others (Gimpel, 1973c,
1974¢). SITBOL is also notable for its integration with the DEC-10 operating system en-
vironment, which makes it particularly pleasant to use.

Changes to the SNOBOL4 language made in these implementations divide them into
two categories. Those with substantial differences (CAL SNOBOL, FASBOL, and SNO-
BAT) tend to be limited in their use because they cannot run many standard SNOBOL4
programs. On the other hand, SPITBOL, SITBOL, and MACRO SPITBOL are suffi-
ciently compatible with the standard version of SNOBOLA4 that they usually can be used
to run existing programs with few if any modifications. It is interesting to note that the
support of run-time compilation is an important issue here. A surprising number of *‘ ‘pro-
duction’’ SNOBOL4 programs use this feature in an essential way (Griswold, 1975a, pp.
189-191, 222-224; 1975d; Anderson and Griswold, 1976; Gimpel, 1976, pp. 353-359;
Conrow, 1977).

A number of significant extensions have been made to SNOBOL4. Notable are SNO-
BOLA4B, a SIL-based extension that includes three-dimensional character ‘‘blocks’ (Gim-
pel, 1972) and SNOBOL +, which adds pattern matching on trees (Ophir, 1974).

3.2.3. Influences on Hardware

Chai and DiGiuseppe (1965) considered issues of hardware design to support SNOBOL-
like features. M. D. Shapiro (1972a,b) designed a SNOBOL machine using conventional
hardware. A number of attempts have been made to microprogram SNOBOIL4 or SIL
(Syrett, 1971; Rosin, 1969; Rossman and Jones, 1974). So far, such attempts have had only
limited success. While the B5500 and CDC STAR computers have introduced interesting
string operations, the influence of SNOBOL on machine order structures is apparently
tangential.

3.2.4. Use of SNOBOILA as an Experimental Tool

As mentioned in Section 1.9, one of our motivations for developing SNOBOL4 was to
have a vehicle for experimentation with programming language features. Once the project
got under way, it became so overwhelming that there was little possibility for experimen-
tation outside of the main thrust of the language. After the language reached a stable con-
dition in 1970, some experimentation was undertaken at BTL with a SIL-based variant of

628 Part XIil

Paper: A History of the SNOBOL Programming Languages

SNOBOL4 into which some speculative language features were incorporated (Griswold,
1971).

One experiment, while not speculative as a language feature, was interesting in its use of
the run-time compilation facility. Users had long wanted a program cross-reference facil-
ity. Instead of implementing this directly in SIL, it was coded as a SNOBOL4 program
that constructed cross-reference listings. A string corresponding to this program was then
incorporated in the SIL data region. During program initialization, this string was com-
piled as a SNOBOL4 program segment to provide the desired facility. While the imple-
mentation of SNOBOL4 was not designed for bootstrapping, the source-language run-
time compilation facility nevertheless supported this kind of process, which Jim Gimpel
calls ‘“‘spatial bootstrapping’’ (Gimpel, 1973d). Jim used a similar technique to provide a
histogram facility for SITBOL (Gimpel, 1974c).

Concentrated experimental work started in 1971 at the University of Arizona to exploit
SNOBOLA4 as a research tool. Early work led to several additions to SNOBOL4 to extend
its usefulness in this area (Griswold, 1975c). Subsequent applications led to new parame-
ter transmission techniques (Druseikis and Griswold, 1973), high-level data structure pro-
cessing facilities (Hallyburton, 1974), a linguistic interface to the SIL abstract machine
(Griswold, 1975b) and novel performance measurement facilities (Ripley and Griswold,
1975).

3.3. Mistakes and Problems
3.3.1. Syntax and Control Structure

There are many things to criticize about any programming language and SNOBOL is no
exception. The most controversial aspect of SNOBOLA is its primitive syntax and lack of
““modern”’ control structures. This is a debatable issue. SNOBOL has long been popular
among nonprofessional and ‘‘novice’’ programmers who find the simple test-and-goto
structure of SNOBOL to be much preferable to the nested control structures of languages
that are more sophisticated in this respect. While the syntax and control structures of
SNOBOL have been continually criticized by the more sophisticated component of the
computing community, it may just be that this aspect of SNOBOL was primarily responsi-
ble for its initial acceptance and its practical usefulness.

At the present time, such a syntax and control structure would be ‘‘socially unaccept-
able”’ in the design of a new language. With the maturation of the programming commu-
nity, the time for a SNOBOL-style syntax may be past; it certainly is not a necessity. Al-
ternatives have been suggested (Griswold, 1974; Lindsay, 1975; Tamir, 1974) and SL5
provides an integration of the SNOBOL-style signaling mechanism with conventional con-
trol structures (Griswold and Hanson, 1977).

A less controversial problem is the defined function mechanism of SNOBOL4, which
separates the defining statement from the procedure body, provides no static specification
to delimit the procedure body, and does not provide scoping for labels. SNOBOL4 pro-
grammers ‘‘get around’’ these problems, but not happily (Abrahams, 1974). In retrospect,
this aspect of SNOBOL4 seems to be an out-and-out mistake.

A few minor aspects of the syntax of SNOBOL have caused problems all out of propor-
tion to their apparent significance. The use of blanks is the most notable of these prob-
lems. It is debatable whether the absence of a specific operator for concatenation was the

SNOBOL Session 629

Ralph E. Griswold

best choice. While it is convenient to write strings to be concatenated with only separating
blanks, many programmers find that the resulting requirement for blanks to surround infix
operators is a compensating inconvenience. Many program errors result from the failure
to provide mandatory blanks and the absence of a concatenation operator makes programs
harder to read. The dual use of blanks to separate labels and gotos from the rest of state-
ments and to separate the subject from the pattern compounds the problem. If I were to do
it over again, I would, at least, provide explicit operators for concatenation and pattern
matching, although others disagree on this point (Mcllroy, 1977).

The fact that assignment and pattern matching are statements, not expressions, is a curi-
ous anomaly that can be traced to the earliest design considerations where the subject as a
focus of attention was held to be of primary importance. The burden of these restrictions
is not as great as it would be if SNOBOL had more sophisticated control structures. Most
programmers are not aware of the effects of these limitations on their programming styles.
Later dialects such as SITBOL and MACRO SPITBOL have corrected these mistakes.

As might be expected, several preprocessors have been written to convert more con-
ventional control structures into standard SNOBOL4 (Croff, 1974; Beyer, 1976; Hanson,
1977b; Sommerville, 1977).

3.3.2. Structures and Indirect Referencing

SNOBOL, SNOBOL2, and SNOBOL3 were hampered by the single string data type,
which made arithmetic awkward (and inefficient) and required programmers to simulate
structures by encoding them as strings or producing awkward and ‘‘dangerous’’ pointer
networks using indirect referencing. SNOBOL4 corrected these problems with a ven-
geance, introducing nine built-in data types and the ability to create the effect of others by
using defined data objects.

Indirect referencing itself is hard to understand, error-prone, and frequently misused.
While indirect referencing was valuable in SNOBOL, SNOBOL?2, and SNOBOLS3 in the
absence of more direct ways to represent structural relationships, its continuance in SNO-
BOL4 was probably a mistake. With the exception of computed gotos, indirect referenc-
ing is unnecessary in SNOBOLAJ, since tables provide the same facility with the added
capability to restrict the domain of applicable strings. By the time that tables were added,
however, indirect referencing was ingrained in the language.

3.3.3. String Processing and Pattern Matching

A curiosity of SNOBOLA4 is its relative lack of primitive string operations. Since pattern
matching is so powerful, it is possible to do virtually anything using it. The results may be
bizarre and inefficient, however. For example, SNOBOL4 does not have a primitive
substring operation and pattern matching is necessary to perform even this simple opera-
tion. While SPITBOL and SITBOL rectified this defect, even these dialects lack primi-
tives for ‘‘lexical’’ operations such as locating the position of a substring within a string.
SL5 shows that there is no conceptual barrier to such primitives (Griswold et al., 1977).

While pattern matching is certainly the most powerful facility in SNOBOLA4, it has many
defects, some of which are rarely recognized. The most obvious problem lies in the heuris-
tics used in pattern matching. These were originally introduced to avoid ‘‘futile’” attempts
to match (Griswold, 1972a, pp. 35-36, 126—131). The need for heuristics can be justified in
theory by the observation that there are situations in which backtracking can cause pat-

630 Part Xlil

Paper: A History of the SNOBOL Programming Languages

tern matching to take arbitrarily long before failing, while the failure can nonetheless be
predicted, a priori, on the basis of such a simple consideration as the length of the subject.
Until SNOBOLA, these heuristics were strictly an implementation matter, since they did
not affect the results of program execution except possibly in the amount of time required.
With the introduction of unevaluated expressions and other dynamic effects during pat-
tern matching in SNOBOLA4, heuristics became a linguistic matter. Failure to complete
pattern matching because of the heuristics might cause some component with significant
effects to be bypassed. This problem was ‘‘solved’’ by placing the heuristics under the
control of a programmable switch. The heuristics remained a problem, however. They are
complex and difficult to understand (even the implementors have to resort to implementa-
tion listings to resolve some of the more subtle effects). The usefulness of the heuristics is
also questionable. Experiments with a representative set of programs has shown that most
programs run properly with or without the heuristics and the saving in execution time is
small or nonexistent. It is quite possible that the overhead of supporting the heuristics is
greater than the savings that they produce. The concern over the possible consequences of
backtracking appears to be unjustified in practice, and the heuristics probably should have
been removed.

Less obvious problems with pattern matching lie in its overly large vocabulary, its idio-
syncrasies, and its lack of generality. The strict left-to-right direction of pattern matching
and the lack of a facility for moving or resetting the focus of attention within the subject
without advancing to the right except as a result of successful pattern matching produces
awkward and inefficient programming techniques. The absence of synthesis facilities at
the level of the analysis facilities results in an asymmetry and requires string construction
to be carried out at an entirely different level and frame of reference from analysis. Doyle
(1975) proposed solutions to some of these problems.

In addition, although analysis produces a complete ‘‘parse’’ of the subject according to
the pattern, the results are unavailable to the programmer except in terms of success or
failure and in the identification of specifically matched substrings. Thus the structure of
the parse is lost. The power of pattern matching in SNOBOL4 is therefore somewhat illu-
sory. It is trivial to write a recognizer for any context-free grammar (Griswold 1975a, pp.
7-12, 233-234), but the corresponding parser is much more difficult and requires use of
side effects and unobvious techniques (Gimpel, 1976, pp. 411-415).

Another deficiency in pattern matching is the lack of any way to write source-language
procedures to perform pattern matching. While defined functions can be used to extend
the repertoire of built-in functions, there is no corresponding mechanism for extending the
repertoire of built-in pattern-matching procedures. An approach to solving these problems
has been recently suggested (Griswold, 1975e, 1976c, e).

The fact that decomposition of strings through pattern matching operates by the side
effects has always been a problem. By its nature, this mechanism is error prone and un-
structured. On the other hand, string analysis, by analogy with grammatical characteriza-
tions of languages, leads naturally to deriving multiple values from a single analysis. A
well-structured, uncomplicated solution to this problem remains elusive.

3.3.4. Input and Output

Input and output have always been problems in SNOBOL. Although the language con-
structs that perform input and output are particularly simple, there are two distinct prob-
lems: the formatting capabilities are weak, and there is no concept of files other than se-

SNOBOL Session 631

Ralph E. Griswold

quential ones. These deficiencies have restricted the use of SNOBOLA4 in some cases and
led to extensions in dialects such as SPITBOL.

The use of FORTRAN I/O as a specification for SNOBOL4 I/0 had historical bases
and was a mistake. It was chosen because FORTRAN was well known and so that imple-
mentors could use FORTRAN I/0 packages instead of having to implement their own,
thus enhancing portability. With advances in the state of the art, both of these concerns
seem to have been misplaced. In retrospect it would have been a better choice to develop
I/O specifically suitable for SNOBOL. Implementations that have departed from the
FORTRAN standards have produced much more satisfactory results (Dewar, 1971; Gim-
pel, 1973c¢).

3.4. Changes and Additions

Many changes and additions to SNOBOL have been suggested, but not adopted. Most
of these have been of the ‘‘junky’’ variety (such as a keyword &TEBAHPLA that would
have contained an order-reversed copy of the alphabet). Many suggestions were made to
meet specific or idiosyncratic needs. Our general attitude toward such suggestions was
reserved, but they were accumulated with a mind toward abstracting the essence from
apparently unrelated suggestions and producing unified improvements (Griswold,
1972b,c). For example, many suggestions were received for making specific improve-
ments to pattern matching in SNOBOL3, but none of these was incorporated into the lan-
guage. Nonetheless, a more general concept of patterns as data objects evolved. This con-
cept subsumed all of the pattern-matching facilities of SNOBOL3, as well as the
suggestions for changes, but it placed them in a conceptually simpler framework.

In summary, the general attitude was not to include specific language features, however
useful they might appear, unless they fit naturally into the existing semantic framework or
until a broader conceptual basis could be found. Phrased another way, the decision to in-
clude suggested features was more a matter of philosophy than pragmatism.

3.5. User Problems

Inefficiency is the problem most frequently ascribed to the SNOBOL languages, and
interpretive implementations are frequently cited as the source of the problem. In fact, itis
mainly language features that require run-time binding that lie at the root of most of the
problems. Even ‘‘compiler’” implementations such as SPITBOL (Dewar, 1971) have a sig-
nificant interpretive component (Griswold, 1977a), and there are interpreters that rival the
performance of such compilers (Gimpel, 1973b; Dewar and McCann, 1977).

Until SNOBOL4 there was, in fact, relatively little user concern about the efficiency of
the SNOBOL languages. Despite the fact that third-generation hardware and subsequent
developments have lowered the actual cost of computation considerably, increased
awareness of costs and increased competition for resources resulted in more and more
concern about efficiency. Thus SNOBOLA4 is criticized for its inefficiency, even though it
is actually substantially more efficient than SNOBOLJ3.

Nonetheless, the major problem that most users have had with SNOBOLA is the re-
sources that it requires. Depending on the user’s environment, this may translate into
cost, poor turnaround time, or the inability to run a program altogether due to storage

632 Part Xl

Paper: A History of the SNOBOL Programming Languages

limitations. This problem extends to the unavailability of SNOBOL4 implementations on
computers with limited memories. Naive users, in particular, tend to get into difficulty
with programs that run satisfactorily on small amounts of sample data, but are totally im-
practical when applied to real data. Although the developers of SNOBOLA4 actively dis-
couraged its use for large problems, recommending it instead for simple, ‘‘one-shot’’ uses
(Poage, 1977), even when the advice was received it was seldom taken. An inherent prob-
lem is often overlooked: string data simply take large amounts of space. Programs are
written, for example, to keep a dictionary in core and tests are made with only a few
words. The user fails to see the consequences of using the full dictionary. This problem is,
of course, not specific to SNOBOLA4, but it is more severe there because of the emphasis
on nonnumeric data and the ease of expressing otherwise complex operations on such
data.

As mentioned in Section 1.9, the SIL implementation of SNOBOL4 was not expected to
be efficient. In practice, this implementation carried SNOBOL4 very close to the fine line
between practicality and impracticality. In a sense, the implementation succeeded almost
too well. It is efficient enough for use in some environments and for some problems. As a
consequence SNOBOLA4 has come into wide use. On the other hand, it is too inefficient to
run production programs in most environments. If the implementation had proved too in-
efficient for general use, early modification to the implementation or to the language itself
might have produced a significantly more efficient system. To some extent, these concerns
are of more historical than current interest, since more efficient implementations, notably
SPITBOL, SITBOL, and MACRO SPITBOL are coming into widespread use (Griswold,
1976d).

3.6. Implementation Problems

Because of the design philosophy, which sometimes has been expressed as ‘‘the imple-
mentor be damned,”” SNOBOL has presented both serious and interesting implementation
problems. Briefly summarized, these are:

1. Storage management, including varying length strings, dynamic allocation, and im-
plicit garbage collection.

Maintenance of a changing symbol table at run time.

Implicit processes, such as input, output, and tracing.

Pattern matching.

Run-time compilation.

Delayed bindings, including redefinition of functions and operators at run time.

Sk WD

In addition, some language features have a disproportionate effect on implementation.
For example, the ability to redefine any built-in operator at run time forces implementa-
tion techniques that impose a substantial execution overhead. The unevaluated expression
operator provides a particularly glaring example. Since this operator must leave its
operand unevaluated and any operation can be made synonymous with it at run time, in
the SIL implementation all operations are handled in prefix mode. By simply exempting
this operator from redefinition, and treating it specially during compilation, SITBOL
allows more efficient suffix evaluation to be used in place of prefix evaluation (Griswold,
1977a). This exemption is certainly a minor concession of design to implementation effi-

SNOBOL Session 633

Ralph E. Griswold

ciency. Interestingly, however, prefix evaluation in SNOBOL4 preceded the introduction
of unevaluated expressions and, in fact, it was the existence of prefix code that suggested
unevaluated expressions.

Related issues and their treatment constitute a large and complex subject, which is dis-
cussed elsewhere in detail (Griswold, 1972a, 1977a).

3.7. Tradeoffs and Compromises

Very few of the traditional tradeoffs and compromises in language design were made for
SNOBOL. By the nature of the design philosophy, few conscious linguistic concessions
were made to implementation difficulties or efficiency. Most concessions, in fact, were
made because of limited personnel resources and because of pressure (both from within
and without the development group) to produce systems that could be used. Certainly sev-
eral interesting areas for language extension went unexplored for lack of time and re-
sources.

4, Implications for Current and Future Languages

4.1. Influences on Other Languages

The SNOBOL languages have had little apparent direct effect on the mainstream of pro-
gramming language development. This lack of direct influence is probably a necessary
consequence of the direction SNOBOL has taken, which is deliberately contrary to the
mainstream. Most of the direct influence has been reflected in offshoots and dialects of
existing languages.

String processing extensions to FORTRAN represent the most prevalent influence of
the basic string operations and pattern matching (Jessup, 1966; Puckett and Farlow, 1966;
Zweig, 1970; Gimpel, 1970; Shapiro, 1970; Baron and Golini, 1970; Hanson, 1974). Similar
proposals have been made for PL/I (Rosin, 1967), ALGOL 60 (Storm, 1968), and ALGOL
68 (Dewar, 1975a).

The obvious relationship between SNOBOL and macro processing has resulted in the
use of SNOBOL-style pattern matching in a number of macro processors (Waite, 1967,
1969; Kagan, 1972; Brown, 1974; Wilson, 1975).

Where there has been official acceptance of SNOBOL-like features in major languages,
it has been grudging. PL/I is an example. The designs of SNOBOL4 and PL/I were con-
temporaneous, although the mechanics of the designs were very different. While SNO-
BOL, SNOBOL2, and SNOBOL3 had for several years supported true varying length
strings, the designers of PL/I were reluctant to accept this concept presumably because of
implementation considerations. I particularly recall Dave Farber and Doug Mcllroy urging
that string length be handled implicitly in PL/I but to no avail (although the EPL dialect of
PL./1 (Cambridge Information Systems Laboratory, 1968) did dynamically allocate vary-
ing strings). Similarly, Bob Rosin carried on an early campaign for simple string matching
functions (Rosin, 1967), but only recently has something of this kind been added in the
form of AFTER and BEFORE (American National Standards Institute, 1976, pp. 318,
322). COBOL also has expanded its earlier EXAMINE facility to a more powerful IN-
. SPECT statement, along with STRING and UNSTRING statements for decomposition

634 Part Xl

Paper: A History of the SNOBOL Programming Languages

and concatenation (American National Standards Institute, 1974, Ch. II, pp. 68-73, 86—
88, 91-94).

The influence of SNOBOL features on dialects and divergent language developments
has been more marked, if less influential. The SNOBOL concept of patterns has been
most significant. Notable examples occur in PL/I (Pfeffer and Furtado, 1973) and LISP
(Smith and Enea, 1973; Tesler et al., 1973).

Incorporation of SNOBOL features or philosophy into other language contexts has led
to more radical departures for the conventional programming languages. APLBOL, for
example, provides an amalgamation of APL and SNOBOL (Leichter, 1976). ESP3 ex-
tends the concept of SNOBOL4 pattern matching to three-dimensional objects (Shapiro,
1976; Shapiro and Baron, 1977).

Although SNOBOL has never enjoyed general popularity in the AT community, it has
had an indirect, although evident, influence on Al languages such as 1.pak and 2.pak (My-
lopoulos et al., 1973; Melli, 1974). The usefulness of a simple SNOBOL-like language for
Al work is evident in EASEy (Uhr, 1974).

Even the mainstream of SNOBOL development is not entirely dead. Development of a
better understanding of pattern matching (Druseikis and Doyle, 1974; Griswold, 1975¢)
has led to the development of SL5 (SNOBOL Language 5) in the spirit of SNOBOL but
specifically designed for research rather than for general use (Griswold et al., 1977; Gris-
wold, 1976c¢,e).

An important influence of SNOBOL has been its ‘‘orthogonality’’ to the mainstream of
programming language development. Where there has been a movement for strong typing,
SNOBOL has offered a ‘‘typeless’’ alternative. Where concern over program structure
and verification has led to the condemnation of a number of ‘‘harmful’’ features and en-
couraged a ‘‘police-state’’ school of programming, SNOBOL has provided ease of pro-
gramming and freedom from constraints. This is not to say that the current concern with
structured programming is misplaced, but rather that there are a variety of concerns that
make different alternatives appropriate in different situations.

SNOBOL has shown that language features, once thought to be impractical because of
implementation considerations, are in fact both practical and valuable. Specifically, SNO-
BOL has led to the development of implementation techniques to meet challenges of lan-
guage features. In short, as a ‘‘maverick,”” SNOBOL has offered an alternative and has
led many persons to think of possibilities that might not have been considered otherwise.

In the area of pattern matching, SNOBOL has directed attention toward backtrack con-
trol structures (most notably in Al languages) and to the implementation of such features
(Druseikis and Doyle, 1974). The resuiting interest in the use of coroutine mechanisms for
implementing search and backtracking algorithms (Griswold, 1976f; Hanson, 1976b; Han-
son and Griswold, 1978) may have substantial future impact on programming language de-
sign.

Of all the features of SNOBOLA4, one of the most important in practice has proved to be
the table data type, which provides at the source level a feature similar to the internal
symbol tables of assemblers and compilers. By eliminating the need for the programmer to
handle all the tedious and error-prone details of symbol tables at the source-language
level, SNOBOLA has provided a way in which symbol table techniques can be used freely
and in which concise, simple programs can be written where the programming burden
would otherwise be unsupportable (Griswold, 1975a, pp. 42—43, 194—197). Probably no
other single feature of SNOBOL4 has made programming simpler or opened the door to

SNOBOL Session 635

Ralph E. Griswold

more application areas. I consider tables to be a prime candidate for inclusion in new high-
level languages.

4.2. Influence on Implementation Techniques

The problems inherent in the efficient implementation of SNOBOL-like languages have
stimulated the development of new techniques and have had the indirect effect of liberat-
ing the design of programming languages from many of the constraints formerly attribut-
able to problems of implementation and efficiency. For example, automatic storage man-
agement was considered to be a major implementation problem at the time SNOBOL was
designed. Now, due at least in part to SNOBOL, the concern is no longer a major issue
(Griswold, 1972a, Hanson, 1977a).

Efficient interpretive systems and particularly the handling of run-time bindings have
been considerably developed as a result of SNOBOL4 implementations (Gimpel, 1973b;
Dewar, 1975b; Dewar and McCann, 1977). A number of other interesting implementation
techniques have been developed (Griswold, 1972a, 1977a; Tye, 1972; Gimpel, 1973b,
1974b; Druseikis and Doyle, 1974; Sears, 1974, Hanson, 1976a; Silverston, 1976b).

4.3. Influences on Theoretical Work

While SNOBOL by its very nature is beyond the realm of the verificationists, it has
posed some interesting problems in the description of formal semantics (Herriot, 1973a,b,
1974; Mickel, 1973; Pagan, 1978; Tennent, 1973). Most theoretical work has concentrated
on the description of patterns and pattern matching (Gimpel, 1973a, 1975; Goyer, 1973;
Tennent, 1973; Stewart, 1975; Fleck, 1977), their implementation (Goyer, 1973; Druseikis
and Doyle, 1974), and on the relationships between patterns and data structures (Fleck,
1971; Fleck and Liu, 1973).

4.4, Advice from the Experience of SNOBOL

Other language designers should look to the success and durability of a language that is
as contrary as SNOBOL for possible future directions. In my opinion, programming lan-
guage development has a long way to go before it achieves ‘‘perfection’’—Iif that is mean-
ingful, possible, desirable, or even definable. There is too much of a tendency to get
caught up with the fad of the moment, whether it is goto-less programming, FORTRAN
preprocessors for structured programming, or data abstraction. Someone needs to look at
alternatives, to consider unpopular views, and perhaps, particularly, to seek unconven-
tional approaches. SNOBOL serves as an example of the success of such an endeavor.

4.5. The Long-Range Future of SNOBOL

The long-range future of SNOBOL depends on several issues. For example, SNOBOL,
like FORTRAN, might prove indestructible simply because of the extent of its accept-
ance, regardless of the availability of better languages. I regard that as possible but un-
likely. It is likely that a new language will be developed that both shares the philosophy of
SNOBOL and is also better at doing the things SNOBOL was designed to do. After all,
SNOBOLS3 replaced SNOBOL and SNOBOI4 has virtually replaced SNOBOL3.

636 Part Xlii

Paper: A History of the SNOBOL Programming Languages

It is also possible that the current interest (or fad) for structured programming will even-
tually erode the basis of support of SNOBOL so that it will gradually fall into disuse.
There is little evidence that this is happening at the present and I regard this future possi-
bility as unlikely.

Here it is worthwhile to consider again the major reason for the success of SNOBOL —
its availability. There have been many ‘‘good”’ programming languages that have been de-
signed but not implemented. Others have been implemented but not made generally avail-
able. Furthermore there are generally available languages that are not maintained or sup-
ported. SNOBOL is in the small class of nonvendor-supported languages that are
available on a wide variety of machines and that are well documented and consistently
supported (Griswold, 1978a). It is my personal opinion that it was the general availability
of SNOBOL processors and language documentation that were responsible, more than
any other factor, for SNOBOL’s initial success. With the transition to SNOBOLA4, the
wide range of readily available SIL implementations further extended SNOBOL’s use. Ef-
ficient implementations of SNOBOLA4, most notably SPITBOL,, significantly enlarged its
audience. The increasing availability of smaller computers now raises the question of the
availability of SNOBOL processors to the growing ranks of programmers. The recent de-
velopment of implementations of SNOBOLA4 for the PDP-11 (Dewar, 1977; Dalgleish,
1977) and work on implementations for other mid-range machines may be an important
determining factor in the durability of SNOBOLAJ.

ACKNOWLEDGMENTS

The material generously supplied to me by a number of persons over a period of years has proved immensely
valuable in the preparation of the paper. The questions, comments, suggestions, and critical reviews of this paper
by Dave Farber, Dave Hanson, Doug Mcllroy, Jim Poage, Ivan Polonsky, Bob Rosin, Jean Sammet, Mike Sha-
piro, and Hank Tropp have been invaluable. I am, of course, solely responsible for errors of omission and com-
mission. I am indebted most of all to my wife, Madge. She has helped with all aspects of the development of the
paper: as a historian, editor, critic, organizer, and keyboarder. Most of all she has provided constant support and
encouragement during the entire project.

REFERENCES

Abrahams, P. W. (1974). Improving the control structure of SNOBOL4. SIGPLAN NOTICES 9(5): 10-12.

American National Standards Institute (1974). American National Standard Programming Language COBOL,
ANSI X3.23-1974, New York.

American National Standards Institute (1976). American National Standard Programming Language PL/I,
ANSI X3.53-1976, New York.

Anderson, R. O., and Griswold, R. E. (1976) February 18. ACOLYTE; A Document Formatting Program. Tug-
son, Arizona: University of Arizona, Department of Computer Science. SNOBOL4 Project Doc. S4PD11b.

Bailey, F. N., Brann, J., and Kain, R. Y. (1969) August 10. Algebra I Users Reference Manual. Minneapolis,
Minnesota: University of Minnesota. Department of Electrical Engineering.

Barber, C. L. R. (1973) December 10. SNOBOLA4 Version 3.7. El Segundo, California; XDS User’s Group. Pro-
gram Library Catalog Number 890823-11A00.

Baron, R. J., and Golini, J. (1970) September. Strings: Some FORTRAN Callable String Processing Routines
(Unpublished technical report). Iowa City, Iowa: University of lowa, Department of Computer Science.

Berndl, W. (1975) October. An Analysis of the SPITROL System. Toronto, Ontario: Department of Computer
Science, University of Toronto. Technical Report No. 85.

Beyer, T. (1976) April 30. SNECS. Letter to R. E. Griswold.

Brown, P. J. (1974) November. Towards More General String Manipulation —SNOBOLA4 Compared With ML /I
(Unpublished technical report). Canterbury, England: University of Kent at Canterbury.

SNOBOL Session 637

Ralph E. Griswold

Calise, M. F. (1966) February 11. Disk Functions for SNOBOL3. (Unpublished internal memorandum). Holm-
del, New Jersey: Bell Laboratories.

Cambridge Information Systems Laboratory (1968) April. ELP Users’ Reference Manual. Cambridge, Massa-
chusetts.

Chai, D., and DiGiuseppe, J. (1965) May. A Study of System Design Considerations in Computers for Symbol
Manipulation. Ann Arbor, Michigan: University of Michigan, Department of Electrical Engineering. Report
No. 05635-1-F.

Conrow, K. (1977). A FAMULUS post-processor. SIGDOC Newsletter 4(3): 7-8.

Corbaté, F. J., and Vyssotsky, V. A. (1965). Introduction and overview of the MULTICS system. In AFIPS
Conference Proceedings, Fall Joint Computer Conference, pp. 185-196. Washington, D.C.: Spartan Books.

Corbatd, F. J., et al. (1963). The Compatible Time-Sharing System: A Programmer’s Guide. Cambridge, Massa-
chusetts: MIT Press.

Croff, D. L. (1974) November. SNOFLEX Handbook (unpublished technical report). Eugene, Oregon: Univer-
sity of Oregon, Department of Computer Science.

Dalgleish, R. (1977) September 15. Letter to R. E. Griswold.

Datacraft Corporation (1972) July. Series 6000 SNOBOL4 General Specification. Fort Lauderdale, Florida.

Dewar, C. E. S. (1977). RE: Release of SPITBOL-11 Chicago, Illinois: Dewar Information Systems Corpora-
tion.

Dewar, R. B. K. (1971) February 12. SPITBOL Version 2.0 (SNOBOL4 Project Document S4D23). Chicago,
Illinois: Illinois Institute of Technology.

Dewar, R. B. K. (1975a). String Processing in ALGOL-68 (Unpublished technical report). Chicago, Illinois; Illi-
nois Institute of Technology.

Dewar, R. B. K. (1975b). Indirect threaded code. Communications of the ACM 18(6): 330-331.

Dewar, R. B. K., and McCann, A. P. (1974) December. 1900 SPITBOL. Leeds, England: University of Leeds,
Centre for Computer Studies. Technical Report No. 55.

Dewar, R. B. K., and McCann, A. P. (1977). Macro SPITBOL—a SNOBOL4 compiler. Software—Practice
and Experience 7: 95-113.

Dewar, R. B. K., Belcher, K., and Cole, J. (1975) March. UNIVAC /SPITBOL; Version 1.0. Chicago, Illinois:
Illinois Institute of Technology, Department of Computer Science.

Dickman, B. N., and Jensen, P. D. (1968) January 9. Tracing Facilities for SNOBOL4 (Unpublished Technical
Memorandum 68-3344-1). Holmdel, New Jersey: Bell Laboratories.

Doyle, J. N. (1975) February 11. A Generalized Facility for the Analysis and Synthesis of Strings, and a Proce-
dure Based Model of an Implementation. Tucson, Arizona: University of Arizona, Department of Computer
Science. SNOBOLA4 Project Document S4D48.

Druseikis, F. C., and Doyle, J. N. (1974). A procedural approach to pattern matching in SNOBOLA4. In Proceed-
ings of the ACM Annual Conference, pp. 311-317. New York: Association for Computing Machinery.
Druseikis, F. C., and Griswold, R. E. (1973) October t1. An Extended Function Definition Facility for
SNOBQLA. Tucson, Arizona: University of Arizona, Department of Computer Science. SNOBOL4 Project

Document S4D36.

Druseikis, F. C., and Griswold, R. E. (1977) August 24. SPITBOL 6000 User’s Manual (Unpublished technical
report). Tucson, Arizona: University of Arizona, Department of Computer Science.

Dunn, R. (1973). SNOBOLA4 as a language for bootstrapping a compiler. SIGPLAN Notices 8(5): 28-32.

Farber, D. J. (1963a) October 8. FORTRAN Compiler for “‘Double Presision (sic) Project’’ (Program listing).
Holmdel, New Jersey: Bell Laboratories.

Farber, D. J. (1963b) October 18. SNOBOL, an improved COMIT-like language (oral presentation). Ann Arbor,
Michigan: University of Michigan, Computer Center.

Farber, D. J., Griswold, R. E., and Polonsky, I. P. (1963a) May 16. A Preliminary Report on the String Manipu-
lation Language SNOBOL (Unpublished Technical Memorandum 63-3344-2). Holmdel, New Jersey: Bell
Laboratories.

Farber, D. J., Griswold, R. E., and Polonsky, 1. P. (1963b) October 24. Letter to R. W. Hamming.

Farber, D. J., Griswold, R. E., and Polonsky, I. P. (1964a). SNOBOL, a string manipulation language. Journal of
the ACM 11(1): 21-30.

Farber, D. J., Griswold, R. E., and Polonsky, I. P. (1964b) April. SNOBOL 2 (sic) (Unpublished internal memo-
randum). Holmdel, New Jersey: Bell Laboratories.

Farber, D. J., Griswold, R. E., and Polonsky, I. P. (1964¢) April 28. Internal memorandum. Holmdel, New Jer-
sey: Bell Laboratories.

638 Part Xili

Paper: A History of the SNOBOL Programming Languages

Farber, D. J., Griswold, R. E., and Polonsky, I. P. (1964d) October 13. SNOBOL3 (Unpublished Technical
Memorandum 64-3344-1). Holmdel, New Jersey: Bell Laboratories.

Farber, D. J., Griswold, R. E., and Polonsky, I. P. (1965a) October 7. SNOBOL3 Source (Program listing).
Holmdel, New Jersey: Bell Laboratories.

Farber, D. J., et al., (1965b) May 13. Programming Machine-Language Functions for SNOBOL3 (Unpublished
Technical Memorandum 64-3343-2). Holmdel, New Jersey: Bell Laboratories.

Farber, D. J., Griswold, R. E., and Polonsky, I. P. (1966). SNOBOL3 programming language. Bell System Tech-
nical Journal 45: 895--944.,

Faulhaber, G. R. (1963) August 26. SNAFU (program listing). Holmdel, New Jersey: Bell Laboratories.

Faulhaber, G. R. (1964) February 17. A Simulation Program for One- and Two-Dimensional Automata (Unpub-
lished Engineers Notes). Holmdel, New Jersey: Bell Laboratories.

Flannery, M. G. (1964) July 22. Push and Pop (Unpublished Engineers Notes). Holmdel, New Jersey: Bell Labo-
ratories.

Fleck, A. C. (1971). Towards a theory of data structures. Journal of Computer and System Sciences 5: 475-488.

Fleck, A. C. (1977) March. Formal Models of String Patterns (Unpublished technical report). Iowa City, Iowa:
University of Iowa, Computer Science Department and University Computer Center.

Fleck, A. C., and Liu, L.-C. (1973) June. On the Realization of Data Graphs. Iowa City, Iowa: University of
Iowa, Department of Mathematics. Technical Report No. 67.

Forte, A. (1967). SNOBOL3 Primer; An Introduction to the Computer Programming Language. Cambridge,
Massachusetts: MIT Press.

Gaines, R. S. (1968) March 1. Preliminary Report on the SNOBOL4 Programming Language, Revised to Con-
form to the CDC 6000 Implementation (Unpublished technical report). Princeton, New Jersey: Institute for
Defense Analyses.

Galler, B. A. (1968) March. Letter to the Editor. Communications of the ACM 11(3). 148

Galler, B. A., and Perlis, A. J. (1970). A View of Programming Languages. Reading, Massachusetts: Addison-
Wesley.

Gaskins. R., Jr. (1970) March. CAL SNOBOL Reference Manual (Unpublished technical report). Berkeley, Cali-
fornia: University of California, Computer Center.

Gimpel, J. F. (1970) March 23. SNOBOLizing FORTRAN. Letter to R. Zweig.

Gimpel, J. F. (1972). Blocks— A new datatype for SNOBOLA4. Communications of the ACM 15(6): 438—-447.

Gimpel, J. F. (1973a). A theory of discrete patterns and their implementation in SNOBOL4. Communications of
the ACM 16(2): 91-100.

Gimpel, J. F. (1973b) May 10. A Design for SNOBOLA4 for the PDP-10, Part —The General. Holmdel, New
Jersey: Bell Laboratories. SNOBOL4 Project Document S4D29b.

Gimpel, J. F. (1972¢) June 1. SITBOL Version 3.0. Holmdel, New Jersey: Bell Laboratories. SNOBOLA4 Project
Document S4D30b.

Gimpel, J. F. (1973d). Private communication to R. E. Griswold.

Gimpel, J. F. (1974a). The minimization of spatially-multiplexed character sets. Communications of the ACM
17(6): 315-318.

Gimpel, J. F. (1974b) May 1. A Hierarchical Approach to the Design of Linkage Conventions. Holmdel, New
Jersey: Bell Laboratories. SNOBOL4 Project Document S4D41.

Gimpel, J. F. (1974c). Some highlights of the SITBOL language extensions for SNOBOL4. SIGPLAN Notices
9(10): 11-20.

Gimpel, J. F. (1975). Nonlinear pattern theory. Acta Informatica 4: 213-229.

Gimpel, J. F. (1976). Algorithms in SNOBOL4. New York: Wiley.

Gimpel, J. F., and Hanson, D. R. (1973) October 5. The Design of ELFBOL—A Full SNOBOLA4 for the PDP-11.
Holmdel, New Jersey: Bell Laboratories. SNOBOL4 Project Document S4D43.

Goyer, P. (1973) August. Le language SNOBOLA et la conformité chaine-modéle. Ph. D. Thesis, Université de
Montreal.

Griswold, R. E. (1962) September 18. The Separation of Flow Graphs. (Unpublished Technical Memorandum
62-3344-3). Holmdel, New Jersey: Bell Laboratories.

Griswold, R. E. (1963a) March. SCL7 (Unpublished draft). Holmdel, New Jersey: Bell Laboratories.

Griswold, R. E. (1963b) April. A Preliminary Report on a String Manipulation Language (Unpublished draft).
Holmdel, New Jersey: Bell Laboratories.

Griswold, R. E. (1963¢) July 18. Algebraic Evaluation (Program listing). Holmdel, New Jersey: Bell Laborato-
ries.

SNOBOL Session 639

Ralph E. Griswold

Griswold, R. E. (1964a) January 24. Syntax Analysis (Program listing). Holmdel, New Jersey: Bell Laboratories.

Griswold, R. E. (1964b) August 4. Determinant Computation Using 7 /29/63 SNOBOL3 (Program listing). Holm-
del, New Jersey: Bell Laboratories.

Griswold, R. E. (1964c) October 6. SNOBOL? is Obsolete (Program listing). Holmdel, New Jersey: Bell Labora-
tories.

Griswold, R. E. (1965) June 1. Linked-List Functions for SNOBOL3 (Unpublished Technical Memorandum 65-
3343-6). Holmdel, New Jersey: Bell Laboratories.

Griswold, R. E. (1966—1969). Entries in SNOBOL4 Prgject Log. Holmdel, New Jersey: Bell Laboratories.

Griswold, R. E. (1966a) April 18. Special Purpose SNOBOL3 Functions —II (Unpublished Technical Memoran-
dum 65-3343-1). Holmdel, New Jersey: Bell Laboratories.

Griswold, R. E. (1966b) April 24. Entry in SNOBOLA4 Project Log. Holmdel, New Jersey: Bell Laboratories.

Griswold, R. E. (1966¢) May 9. Tentative SNOBOL4 Syntax Described in SNOBOL4 (Unpublished draft). Holm-
del, New Jersey: Bell Laboratories.

Griswold, R. E. (1966d) July 28. Entry in SNOBOLA Project Log. Holmdel, New Jersey: Bell Laboratories.

Griswold, R. E. (1967) June 28. Entry in SNOBOLA Distribution Log. Holmdel, New Jersey: Bell Laboratories.

Griswold, R. E. (1968-). SNOBOL4 Information Bulletins. Holmdel, New Jersey: Bell Laboratories and
Tucson, Arizona: University of Arizona, Department of Computer Science. (Published irregularly.)

Griswold, R. E. (1968) January 1. Entry in SNOBOL4 Distribution Log. Holmdel, New Jersey: Bell Laborato-
ries.

Griswold, R. E. (1970) February 27. A Guide to the Macro Implementation of SNOBOL4 (Unpublished Techni-
cal Memorandum 70-8242-5). Holmdel, New Jersey: Bell Laboratories.

Griswold, R. E. (1971). MAIN 79 (Program listing). Holmdel, New Jersey: Bell Laboratories.

Griswold, R. E. (1972a). The Macro Implementation of SNOBOLA: A Case Study of Machine-Independent Soft-
ware Development. San Francisco, California: Freeman.

Griswold, R. E. (1972b) November 9. Suggestions for New Features in SNOBOL4 (Unpublished technical re-
port). Tucson, Arizona: University of Arizona, Department of Computer Science.

Griswold, R. E. (1972c) November 13. Suggestions for New Features in SNOBOLA4; Round 2—The Embel-
lisher’s Delight (Unpublished technical report). Tucson, Arizona: University of Arizona, Department of
Computer Science.

Griswold, R. E. (1974). Suggested revisions and additions to the syntax and control mechanism of SNOBOLA4.
SIGPLAN Notices 9(2): 7-23.

Griswold, R. E. (1975a). String and List Processing in SNOBOLA4: Techniques and Applications. Englewood
Cliffs, New Jersey: Prentice-Hall.

Griswold, R. E. (1975b). A portable diagnostic facility for SNOBOLA4. Software —Practice and Experience 5:
93-104.

Griswold, R. E. (1975¢) February 5. Additions to SNOBOLA4 to Facilitate Programming Language Research.
Tucson, Arizona: University of Arizona, Department of Computer Science. SNOBOL4 Project Document
S4D37c.

Griswold, R. E. (1975d) May 22. GENLAB II; A Program for Synthesizing Text. Tucson, Arizona: University of
Arizona, Department of Computer Science. SNOBOL4 Project Document S4PD9%a.

Griswold, R. E. (1975¢). Extensible pattern matching in SNOBOL4. In Proceedings of the ACM Annual Confer-
ence, pp. 248-252. New York: Association for Computing Machinery.

Griswold, R. E. (1976a). The macro implementation of SNOBOL4. In Software Portability, pp. 180-191. Cam-
bridge, England: Cambridge University Press.

Griswold, R. E. (1976b) June 9. Source and Cross-Reference Listings for the SIL Implementation of SNOBOILA.
Tucson, Arizona: University of Arizona, Department of Computer Science. SNOBOL4 Project Document
S4D26b.

Griswold, R. E. (1976¢) June 17. String Scanning in SL5. Tucson, Arizona: University of Arizona, Department
of Computer Science. SLS Project Document S5LD5a.

Griswold, R. E. (1976d) July 28. SNOBOLA4 Information Bulletin S4B17. Tucson, Arizona: University of Ari-
zona, Department of Computer Science.

Griswold, R. E. (1976e). String analysis and synthesis in SLS. In Proceedings of the ACM Annual Conference,
pp. 410-414. New York: Association for Computing Machinery.

Griswold, R. E. (1976f). The SL5 programming language and its use for goal-oriented programming. In Proceed-
ings of the Fifth Texas Conference on Computing Systems, pp. 1-5. Austin, Texas: University of Texas.

640 Part Xiil

Paper: A History of the SNOBOL Programming Languages

Griswold, R. E. (1977a) February 4. Highlights of Two Implementations of SNOBOL4. Tucson, Arizona: Uni-
versity of Arizona, Department of Computer Science. SNOBOL4 Project Document S4D55.

Griswold, R. E. (1977b) December 9. Bibliography of Documents Related to the SNOBOL Programming Lan-
guages (Unpublished draft). Tucson, Arizona: University of Arizona, Department of Computer Science.

Griswold, R. E. (1978a) January 7. Sources of Implementations of SNOBOL4. Tucson, Arizona: University of
Arizona, Department of Computer Science. SNOBOL4 Project Document S4N21f.

Griswold, R. E. (1978b) January 11. Bibliography of Numbered SNOBOL4 Documents; May 1967 through Jan-
uary 1978. Tucson, Arizona: University of Arizona, Department of Computer Science. SNOBOL4 Project
Document S4D43b.

Griswold, R. E., and Griswold, M. T. (1973). A SNOBQOLA4 Primer. Englewood Cliffs, New Jersey: Prentice-
Hall.

Griswold, R. E., and Hanson, D. R. (1977). An Overview of SL5. SIGPLAN Notices 12(4): 40-50.

Griswold, R. E., and Polonsky, 1. P. (1962) September 5. The Classification of the States of a Finite Markov
Chain (Unpublished Technical Memorandum 62-3344-3). Holmdel, New Jersey: Bell Laboratories.

Griswold, R. E., and Polonsky, 1. P. (1963a) July 1. String Pattern Matching in the Programming Language
SNOBOL (Unpublished Technical Memorandum 63-3344-3). Holmdel, New Jersey: Bell Laboratories.

Griswold, R. E., and Polonsky, 1. P. (1963b) September 24. IPL Data Compiler (Program listing). Holmdel, New
Jersey: Bell Laboratories.

Griswold, R. E., and Polonsky, I. P. (1965) February 1. Tree Functions for SNOBOL3 (Unpublished Technical
Memorandum 65-3343-1). Holmdel, New Jersey: Bell Laboratories.

Griswold, R. E., and Varian, L. C. (1964) November 24. Special Purpose SNOBOL3 Functions (Unpublished
Technical Memorandum 64-3344-2). Holmdel, New Jersey: Bell Laboratories.

Griswold, R. E., Poage, J. F., and Polonsky, 1. P. (1967a) May 1. Preliminary Description of the SNOBOL4
Programming Language (Unpublished Technical Memorandum 67-3344-2). Holmdel, New Jersey: Bell
Laboratories.

Griswold, R. E., Poage, J. F., and Polonsky, I. P. (1967b) May 1. Preliminary Description of the SNOBOL4
Programming Language. Holmdel, New Jersey: Bell Laboratories. SNOBOL4 Project Document S4D1.

Griswold, R. E., Poage, J. F., and Polonsky, 1. P. (1967c) October 20. Preliminary Report on the SNOBOL4
Programming Language-—II. Holmdel, New Jersey: Bell Laboratories. SNOBOL4 Project Document
S4D4.

Griswold, R. E., Poage, J. F., and Polonsky, 1. P. (1968a) August 8. The SNOBOLA4 Programming Language.
Holmdel, New Jersey: Bell Laboratories. SNOBOL4 Project Document S4D9.

Griswold, R. E., Poage, J. F., and Polonsky, I. P. (1968b). The SNOBOL4 Programming Language. Englewood
Cliffs, New Jersey: Prentice-Hall.

Griswold, R. E., Poage, J. F., and Polonsky, 1. P. (1971). The SNOBOL4 Programming Language, Second Edi-
tion. Englewood Cliffs, New Jersey: Prentice-Hall.

Griswold, R. E., Hanson, D. R., and Korb, J. T. (1977) October 18. An Overview of the SL5S Programming Lan-
guage. Tucson, Arizona: University of Arizona, Department of Computer Science. SLS Project Document
S5LD1d.

Guard, J. R. (1967) December 29. SNOBOL. Princeton, New Jersey: Applied Logic Corporation. Program Bull-
letin #67-006.

Haight, R. C. (1970) October 21. The SNOFLAKE Programming Language (Unpublished Technical Memo-
randum 70-9155-2). Piscataway, New Jersey: Bell Laboratories.

Hall, J. T., and McCabe, P. S. (1967) October 17. SNOBOL3 Primitive Functions —Binary Routines Store on
Disk (Unpublished Technical Memorandum 67-5744-1). Indian Hill, Illinois: Bell Laboratories.

Hallyburton, J. C., Jr. (1974). Advanced Data Structure Manipulation Techniques for the SNOBOL4 Program-
ming Language. Ph.D. Thesis, University of Arizona, Department of Computer Science.

Hamlin, K. B. (1965) February 16. Letter to W. Keister and M. E. Terry.

Hamming, R. W. (1963) October 25. Letter to D. J. Farber, R. E. Griswold, and 1. P. Polonsky.

Hanson, D. R. (1973) June 8. Letter to the editor of SIGPLAN Notices.

Hanson, D. R. (1974). A simple technique for representing strings in FORTRAN 1V. Communications of the
ACM 17(11): 646-647.

Hanson, D. R. (1976a). Variable associations in SNOBOLA4. Software—Practice and Experience 6: 245-254.

Hanson, D. R. (1976b). A procedure mechanism for backtrack programming. In Proceedings of the ACM Annual
Conference, pp. 401-405. New York: Association for Computing Machinery.

SNOBOL Session 641

Ralph E. Griswold

Hanson, D. R. (1977a). Storage management for an implementation of SNOBOLA4. Software —Practice and Ex-
perience T: 179-192.

Hanson, D. R. (1977b). RATSNO-—an experiment in software adaptability. Software —Practice and Experience
7: 623-630.

Hanson, D. R., and Griswold, R. E. (1978). The SL5 procedure mechanism. Communications of the ACM,
21(5): 392-400.

Herriot, R. G. (1973a). Gloss: a semantic model of programming languages. SIGPLAN Notices 8(9): 70-73.

Herriot, R. G. (1973b). Gloss: a high level machine. SIGPLAN Notices 8(11): 81-90.

Herriot, R. G. (1974). A uniform view of control structures in programming languages. In Proceedings of IFIP
Congress, Stockholm, 74, pp. 331-335.

Hirsch, A. E., Jr. (1973) May 15. Letter to G. L. Baldwin.

IBM Corporation (1969). System /360 Administrative Terminal System —OS; Terminal Operations Manual.
White Plains, New York, Application Program H20-0589-1.

IBM Corporation (1970). PL/I(F) Language Reference Manual. White Plains, New York, File No. 5360-29.

Jessup, R. F. (1966) November 30. SNIFF, A Set of Subroutines for String Operations in FORTRAN (Unpub-
lished Technical Memorandum 66-6322-9). Holmdel, New Jersey: Bell Laboratories.

Kagan, C. A. R. (1972). The multigap extension to string language processors. SIGPLAN Notices 3(3): 115-146.
Kain, R. Y., and Bailey, F. N. (1967) September 12. SNOBOL 67 Users Reference Manual (Unpublished techni-
cal report). Minneapolis, Minnesota: University of Minnesota, Department of Electrical Engineering.

Keister, W. (1964) October 20. Letter to R. E. Griswold.

Keister, W. (1970). Private communication to R. E. Griswold.

Kernighan, B. W., and Plauger, P. J. (1976). Software Tools. Reading, Massachusetts: Addison-Wesley.

Kersey, G. (1967). Private communication to R. E. Griswold.

Kostalansky, E. (1967). The definition of the syntax and semantics of the language SNOBOL I (in Slovak). Ky-
bernetika 3.

Lampson, B. W. (1966) April 18. 930 SNOBOL System Reference Manual. Berkeley, California: University of
California. Document 30.50.70, Contract No. SD-185, ARPA.

Lavrov, S. S. (1968). SNOBOL-A; A String Manipulation Language (in Russian). Moscow: USSR Academy of
Science Computer Center.

Lee, C. Y. (1960). Automata and finite automata. Bell System Technical Journal 39: 1276-1296.

Lee, C. Y. (1961a). An algorithm for path connections and its applications. IRE Transactions on Electronic
Computers EC-10: 346-365.

Lee, C. Y. (1961b). Categorizing automata by W-machine programs. Journal of the ACM 10(8): 384-399.

Lee, C. Y. (1963) April 14. Handwritten comments on A Preliminary Report on a String Manipulation Lan-
guage. (See Griswold 1963b.)

Lee, C. Y., and Paull, M. C. (1963). A content addressable distributed logic memory with applications to infor-
mation retrieval. Proceedings of the IEEE 51(6): 924-932.

Lee, C. Y., et al. (1962) September 1. A Language for Symbolic Communication (Unpublished Technical Memo-
randum 62-3344-4). Holmdel, New Jersey: Bell Laboratories.

Leichter, J. (1976). APLBOL (Unpublished technical report). Waltham, Massachusetts: Brandeis University,
Mathematics Department.

LeSeur, W. J. (1969) April 10. Text 360. White Plains, New York: IBM Corporation. Document 360D-29.4.001.

Lindsay, J. H. (1975). SNOBOLY; A Counterproposal to SNOBOLX (Unpublished technical report). Kingston,
Ontario: Queen’s University, Department of Computing and Information Science.

Madnick, S. E. (1966) June. SPL/I: A String Processing Language. Cambridge, Massachusetts: IBM Corpora-
tion, Cambridge Scientific Center. Report 36.006.

Magnani, R. (1964) March 2. A SNOBOL Program for Detecting Isomorphism Between Pairs of Weighted,
Directed Graphs (Unpublished Technical Memorandum 64-3341-1). Holmdel, New Jersey: Bell Laborato-
ries.

Manacher, G. K. (1963) October 14. Syntactic Functions (Program listing). Holmdel, New Jersey: Bell Laborato-
ries.

Manacher, G. K. (1964) July 1. A Package of Subroutines for the SNOBOL Language (Unpublished Technical
Memorandum 64-1222-4). Holmdel, New Jersey: Bell Laboratories.

Manacher, G. K., and Varian, L. C. (1964) October 23. A Dimension Statement and Random Number Facility
for the SNOBOL Language (Unpublished Technical Memorandum 64-1222-10). Holmdel, New Jersey: Bell
Laboratories.

642 Part X

Paper: A History of the SNOBOL Programming Languages

Martellotto, N. A. (1966) June 9. SNOBOL Questionnaire (Internal memorandum). Holmdel, New Jersey: Bell
Laboratories.

Maurer, W. D. (1976). A Programmer’s Introduction to SNOBOL. New York: Am. Elsevier.

McCann, A. P., Holden, S. C., and Dewar, R. B. K. (1976) December. MACRO SPITBOL —DECsystem-10
Version. Leeds, England: University of Leeds, Centre for Computer Studies. Technical Report No. 94.

Mcllroy, M. D. (1962) August 7. A String Manipulation System for FAP Programs (Unpublished Technical
Memorandum 62-1271-4). Holmdel, New Jersey: Bell Laboratories.

Mcllroy, M. D. (1963). A variant method for file searching. Communications of the ACM 6(3): 101.

Mcllroy, M. D. (1977) December 5. Letter to R. E. Griswold.

Melli, L. F. (1974) December. The 2.pak Language Primitives for Al Applications, Masters Thesis, University of
Toronto, Department of Computer Science.

Mickel, A. B. (1973) August. Comparative Study of the Semantics of Selected Programming Languages. Min-
neapolis, Minnesota: University of Minnesota, Computer, Information and Control Sciences. Technical
Report TR 73-9.

MIT Press (1962). An Introduction to COMIT Programming. Cambridge, Massachusetts.

Moody, J. K. M. (1972) November 1. SNOBOLA on Titan (Unpublished technical report). Cambridge, England:
University of Cambridge, Computer Laboratory.

Mooers, C. N. (1968) March. Reply to letter to the Editor. Communications of the ACM 11(3): 148-149.

Morris, R. (1968). Scatter storage techniques. Communications of the ACM 11(1): 38—44.

Morse, P. L. (1976) January. User Manual for Bi700 SPITBOL; Version 1.0 (Unpublished technical report).
Ambherst, New York: State University of New York at Buffalo, Department of Computer Science.

Mylopoulos, J., Radler, N., Melli, L., and Roussopoulas, N. (1973). 1.pak: A SNOBOL-based programming
language for artificial intelligence applications. In Proceedings of the Third International Joint Conference
on Artificial Intelligence, pp. 691-696. Stanford, California: Stanford University.

Newsted. P. R. (1975). SNOBOL; An Introduction to Programming. Rochelle Park, New Jersey: Hayden Book
Co.

Noll, L. W. (1971) April 15. A Text Formatting Program for Phototypesetting Documents (Unpublished techni-
cal report). Holmdel, New Jersey: Bell Laboratories.

Ophir, D. (1974). SNOBOL + (Unpublished technical report). Beer-Sheva, Israel; Atomic Energy Commission,
Nuclear Research Centre-Negev.

Osterweil, L. (1970) August 12. SNOBOILA Version 3.4 on the UNIVAC 1108 under Exec 8 (Unpublished techni-
cal report). Silver Spring, Maryland: Language and Systems Development, Inc.

Pagan, F. G. (1978). Formal semantics of a SNOBOL4 subset. Computer Languages 5(12): 46—49."

Pfeffer, A. S., and Furtado, A. L. (1973). Pattern matching for structured programming. In Conference Record of
the Seventh Asilomar Conference on Circuits, Systems, and Computers, Pacific Grove, California, pp.
466-469.

Poage, J. F. (1965) September 29. GE 645 Software Working Group (Memorandum for File). Holmdel, New
Jersey: Bell Laboratories.

Poage, J. F. (1966a) May 13. Letter to R. E. Griswold.

Poage, J. F. (1966b) November 3. Letter to C. Y. Lee.

Poage, J. F. (1977) December 1. Letter to R. E. Griswold.

Puckett, A. L., and Farlow, C. W. (1966) April 28. Character and Bit String Manipulation Facilities for FOR-
TRAN 1V (Unpublished Technical Memorandum 66-6322-5). Holmdel, New Jersey: Bell Laboratories.

Renne, H. S. (1963) October 1. Letter to F. J. Singer.

Renne, H. S. (1964) August 18. Letter to J. A. Baird.

Ripley, G. D., and Griswold, R. E. (1975). Tools for the measurement of SNOBOL4 Programs. SIGPLAN No-
tices 10(50): 36-52.

Rodgers, E. A. (1966) August 5. Symbolic Differentiator and HSUB Compiler Using SNOBOL (Unpublished
Technical Memorandum 66-3241-4). Murray Hill, New Jersey: Bell Laboratories.

Roosen-Runge, P. H. (1967) August. A Table of Bell Polynomials. Ann Arbor, Michigan: University of Michigan,
Mental Health Research Institute. Communication 212.

Rosin, R. F. (1967). Strings in PL/1. PL/I Bulletin No. 4, pp. 6—12. Attachment to SIGPLAN Notices 2(8).

Rosin, R. F. (1969). Contemporary concepts of microprogramming and emulation. Computing Surveys 1(4):
197-212.

Rossman, G. E., and Jones, L. H. (1974). Functional memory-based dynamic microprocessors for higher level
languages. SIGPLAN Notices 9(8): 37-65.

SNOBOL Session 643

Ralph E. Griswold

Santos, P. J., Jr. (1971) December. FASBOL, A SNOBOLA4 Compiler. Berkeley, California: University of Cali-
fornia, Electronics Research Laboratory. Memorandum No. ERL-M134.

Sears, W. R. (1974) November 25. The Design of SIXBOL, A Fast Implementation of SNOBOILA for the CDC
6000 Series Computers. Tucson, Arizona: University of Arizona, Department of Computer Science.
SNOBOLA4 Project Document S4D45.

Shapiro, L. G. (1976) March. Inexact Pattern Matching in ESP®. Manhattan, Kansas: Kansas State University,
Department of Computer Science. Technical Report CS76-10.

Shapiro, L. G., and Baron, R. J. (1977). ESP®: a language for pattern description and a system for pattern recog-
nition. IEEE Transactions on Software Engineering SE-3(2): 169—183.

Shapiro, M. D. (1969) March 1. CDC 6000 SNOBOL4 (Version 2.0) User’s Guide. Lafayette, Indiana: Purdue
University, Computer Science Center. Report RO SNOBOL4-1.

Shapiro, M. D. (1970) December. An Introduction to Character String Operations Using FORTRAN IV and the
Purdue University String Handling Utility Package (PUSHUP) (Unpublished technical report). Lafayette,
Indiana: Purdue University.

Shapiro, M. D. (1972a) June. A SNOBOL Machine: Functional Architectural Concepts of a String Processor.
Ph.D. Thesis, Purdue University.

Shapiro, M. D. (1972b) September. A SNOBOL machine: a higher-level languge processor in a conventional
hardware framework. In Innovative Architecture, Digest of Papers from COMPCON 72, Sixth Annual
IEEE Computer Society International Conference, pp. 41-44. San Francisco, California.

Silverston, S. M. (1976a) August. SNOBAT 1.9. Ames, lowa: Iowa State University, Computation Center. Tech-
nical Report No. 17.

Silverston, S. M. (1976b) December. Storage Structure and Management in the SNOBAT Implementation of
SNOBOLA4. Ames, lowa: Iowa State University, Department of Computer Science. Technical Report 76-14.

Silverston, S. M. (1977). Extensions to SNOBOL4 in the SNOBAT implementation. SIGPLAN Notices 12(9):
77-84.

Simon, A. H., and Walters, D. A. (1964) December 28. RCA SNOBOL Programmers’ Manual (Unpublished
technical report). Princeton, New Jersey: RCA Laboratories.

Sinowitz, N. R. (1966). Private communication to R. E. Griswold.

Smith, D. C., and Enea, H. J. (1973). MLISP2. Stanford, California: Stanford University, Artificial Intelligence
Laboratory. Report AIM-195.

Smith, E. (1970) September. Interactive SNOBOL4. El Segundo, California: XDS Program Library Catalog No.
890637-11A00.

Sommerville, 1. (1977). S-SNOBOL —Structured SNOBOL4. (Unpublished technical report). Edinburgh:
Heriot-Watt University, Department of Computer Science.

Stewart, G. F. (1975). An algebraic model for string patterns. In Conference Record of the Second ACM Sympo-
sium on Principles of Programming Languages, Palo Alto, California, pp. 167-184,

Storm, E. F. (1968) CHAMP-—character manipulation procedures. Communications of the ACM 11(8): 561-
566.

Strauss, H. J. (1968) July 15. External Functions for SNOBOL4 (Unpublished Technical Memorandum 68-3344-
3). Holmdel, New Jersey: Bell Laboratories.

Syrett, T. (1971). The SNOBOL Machine: The First Virtual Machine Language for the SLAC MLP-900 (Unpub-
lished draft). Stanford, California: Stanford Linear Accelerator Center.

Tamir, M. (1974) August. Control Mechanisms in SNOBOL (Unpublished technical report). Jerusalem: Hebrew
University of Jerusalem.

Tennent, R. D. (1973). Mathematical semantics of SNOBOL4. In Conference Record of ACM Symposium on
Principles of Programming Languages, Boston, Massachusetts, pp. 95-107.

Tesler, L. G., Enea, H. J., and Smith, D. C. (1973). The LISP70 pattern matching system. In Proceedings of the
Third International Joint Conference on Artificial Intelligence, pp. 671-676. Stanford, California: Stanford
University.

Tharp, A. L. (1977). Applications of SPITBOL. Raleigh, North Carolina: North Carolina State College.

Tye, T. T. (1972). CISBOL; Compiler Implementation of SNOBOL (Unpublished technical report). Tucson, Ari-
zona: University of Arizona, Department of Computer Science.

Uhr, L. (1968). Private communication to R. E. Griswold.

Uhr, L. (1974) December. EASEy: An English-Like Programming Language for Artificial Intelligence and Com-
plex Information Processing. Madison, Wisconsin: University of Wisconsin, Computer Sciences Depart-
ment. Technical Report 233.

644 Part Xili

Transcript of Presentation

Wade, L. (1970) October 17. PDP-10 SNOBQOL4 User's Guide. Maynard, Massachusetts: Digital Equipment
Corporation. DECUS Program Library No. 10-104,

Waite, W. M. (1967-1973). SNOBOL Bulletins in SIGPLAN Notices. (Appearing irregularly.)

Waite, W. M. (1967). A language-independent macro processor. Communications of the ACM 10(7): 433-440.

Waite, W. M. (1969). The Stage2 Macro Processor. Boulder, Colorado: University of Colorado, Computer Cen-
ter. Report No. 69-3.

Wetherell, C. (1978). Etudes for Programmers. Englewood Cliffs, New Jersey: Prentice-Hall.

Wilson, D. L. (1966) August. SNOBOL3. Milwaukee, Wisconsin: University of Wisconsin, Computer Center.
Technical Report.

Wilson, F. C. (1975) April. A Macro Programming Language. College Station, Texas: Texas A&M University
Graduate Center. NTIS Report AD-A009294.

Wilson, T. C. (1967) July 19. No. 1 ESS—Special Purpose SNOBOL3 Functions (Unpublished Engineers
Notes). Indian Hill, Illinois: Bell Laboratories.

Yngve, V. H. (1958). A programming language for mechanical translation. Mechanical Translation 5(1): 25-41.

Yngve, V. H. (1964). COMIT (oral presentation). Holidel, New Jersey: Bell Laboratories.

Yngve, V. H. (1972). Computer Programming with COMIT II. Cambridge, Massachusetts: MIT Press.

Zweig, R. (1970) February 17. FORTRAN Language Extensions for Character String Manipulation (Unpub-
lished Technical Memorandum 70-9155-1). Holmdel, New Jersey: Bell Laboratories.

TRANSCRIPT OF PRESENTATION

JAN LEg: Our first speaker is Ralph Griswold. Ralph received his Ph.D. from Stanford
in 1962, which, within the period that we are discussing, makes him one of the new kids on
the block. At the time of work on SNOBOL languages, begun in 1962, he was a member of
the technical staff of Bell Labs in the Programming Research Studies Department at
Holmdel, New Jersey. The members of this department were engaged in a variety of re-
search projects related to the use of computers for high-level, nonnumerical computation.
The work on SNOBOL was motivated by a need for a better tool to support these research
activities. Since that time Ralph has moved to the University of Arizona where he is Pro-
fessor of Computer Science and the head of the department.

RaLpPH E. GrRiswoLD: The SNOBOL languages constitute a development over quite a
period of time, an evolutionary development [Frame 1]. [Frame 2] is a time line. The solid
lines represent periods of active language development; the circles represent specific re-

The Setting

Original Goals

SNOBOL Characteristics

Goals for SNOBOL2 and SNOBOL3

SNOBOL3 Characteristics

Goals for SNOBOL4

SNOBOL4 Characteristics

Contributions of the SNOBOL Languages
The Future of SMOBOL

Frame 1. The SNOBOL languages.

WO 0 N LN

SNOBOL Session 645

